Skip to main content
Log in

The Genetic Diversity of Culturable Nitrogen-Fixing Bacteria in the Rhizosphere of Wheat

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

A total of 17 culturable nitrogen-fixing bacterial strains associated with the roots of wheat growing in different regions of Greece were isolated and characterized for plant-growth-promoting traits such as auxin production and phosphate solubilization. The phylogenetic position of the isolates was first assessed by the analysis of the PCR-amplified 16S rRNA gene. The comparative sequence analysis and phylogenetic analysis based on 16S rRNA gene sequences show that the isolates recovered in this study are grouped with Azospirillum brasilense, Azospirillum zeae, and Pseudomonas stutzeri. The diazotrophic nature of all isolates was confirmed by amplification of partial nifH gene sequences. The phylogenetic tree based on nifH gene sequences is consistent with 16S rRNA gene phylogeny. The isolates belonging to Azospirillum species were further characterized by examining the partial dnaK gene phylogenetic tree. Furthermore, it was demonstrated that the ipdC gene was present in all Azospirillum isolates, suggesting that auxin is mainly synthesized via the indole-3-pyruvate pathway. Although members of P. stutzeri and A. zeae are known diazotrophic bacteria, to the best of our knowledge, this is the first report of isolation and characterization of strains belonging to these bacterial genera associated with wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Andrade G, Esteban E, Velasco L, Lorite MJ, Bedmar EJ (1997) Isolation and identification of N2-fixing microorganisms from rhizosphere of Capparis spinosa (L). Plant Soil 197:19–23

    Article  CAS  Google Scholar 

  2. Anonymous (2003) World wheat, corn and rice production, food and agricultural organization of the United Nations. http://www.nue.okstate.edu/

  3. Antonopoulos DA, Russel WM, White BA (2003) Phylogenetic reconstruction of Gram-positive organisms based on comparative sequence analysis of molecular chaperones from the ruminal microorganism Ruminococcus flavefaciens FD-1. FEMS Microbiol Lett 227:1–7

    Article  CAS  PubMed  Google Scholar 

  4. Baldani JI, Caruso VLD, Baldani SR, Goi J, Döbereiner J (1997) Recent advances in BNF with non-legume plants. Soil Biol Biochem 29:911–922

    Article  CAS  Google Scholar 

  5. Baldani VLD, de Alvarez BMA, Baldani JI, Dobereiner J (1986) Establishment of inoculated Azospirillum spp. in the rhizosphere and in roots of field grown wheat and sorghum. Plant Soil 90:35–46

    Article  Google Scholar 

  6. Baldani VLD, Dobereiner J (1980) Host-plant specificity in the infection of cereals with Azospirillum spp. Soil Biol Biochem 12:433–439

    Article  Google Scholar 

  7. Barraquio WL, Daroy MLG, Tirol AC, Ladha JK, Watanabe I (1986) Laboratory acetylene reduction assay for relative measurement of N2-fixing activities associated with field-grown wetland rice plants. Plant Soil 90:359–372

    Article  CAS  Google Scholar 

  8. Barraquio WL, Dumont A, Knowles R (1988) Enumeration of free-living aerobic N2-fixing and H2-oxidizing bacteria by using a heterotrophic semisolid medium and most-probable-number technique. Appl Environ Microbiol 54:1313–1317

    CAS  PubMed  Google Scholar 

  9. Bashan Y, Holguin G (1997) Azospirillum-plant relationships: environmental and physiological advances (1990–1996). Can J Microbiol 43:103–121

    Article  CAS  Google Scholar 

  10. Beneduzi A, Costa PB, Parma M, Melo IS, Bodanese-Zanettini MH, Passaglia MP (2010) Paenibacillus riograndensis sp. nov., a nitrogen-fixing species isolated from the rhizosphere of Triticum aestivum. Int J Syst Evol Microbiol 60:128–133

    Article  CAS  PubMed  Google Scholar 

  11. Berge O, Heulin T, Achouak W, Richard C, Bally R, Balandreau J (1991) Rahnella aquatilis, a nitrogen-fixing enteric bacterium associated with the rhizosphere of wheat and maize. Can J Microbiol 37:195–203

    Article  Google Scholar 

  12. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  13. Chun J, Lee H-K, Jung Y, Kim M, Kim S, Kim BK, Lim Y-M (2007) EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261

    Article  CAS  PubMed  Google Scholar 

  14. Creus CM, Sueldo RJ, Barassi CA (2004) Water relations and yield in Azospirillum-inoculated wheat exposed to drought in the field. Can J Bot 82:273–281

    Article  Google Scholar 

  15. De Oliveira PR, Boddey LH, James EK, Sprent JI, Boddey RM (2002) Adsorption and anchoring of Azospirillum strains to roots of wheat seedlings. Plant Soil 246:151–166

    Article  Google Scholar 

  16. Desnoues N, Lin M, Guo X, Carreno-Lopez R, Elmerih C (2003) Nitrogen fixation genetics and regulation in a Pseudomonas stutzeri strain associated with rice. Microbiology 149:2251–2262

    Article  CAS  PubMed  Google Scholar 

  17. Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant-growth promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22:107–149

    Article  CAS  Google Scholar 

  18. Fernado L, Roesch W, Dorr de Quandro P, Camargo FAO, Triplett EW (2007) Screening of diazotrophic bacteria Azospirillum spp. for nitrogen fixation and auxin production in multiple field sites in southern Brazil. World J Microbiol Biotechnol 23:1377–1383

    Article  Google Scholar 

  19. Garvin S, Lindemann WC (1986) Isolation, characterization, and inoculation of N2-fixing bacteria from dicotyledonous plants. Can J Microbiol 32:912–916

    Article  CAS  Google Scholar 

  20. Gauthier F, Neufeld JD, Driscoll BT, Archibald FS (2000) Coliform bacteria and nitrogen fixation in pulp and paper mill effluent treatment systems. Appl Environ Microbiol 66:5155–5160

    Article  CAS  PubMed  Google Scholar 

  21. Glickmann E, Dessaux Y (1995) A critical evaluation of the specificity of Salkowski reagent for indole compounds produced by phytopathogenic bacteria. Appl Environ Microbiol 61:793–796

    CAS  PubMed  Google Scholar 

  22. Glickmann E, Gardan L, Jacquet S, Hussain S, Elasri M, Petit A, Dessaux Y (1998) Auxin production is a common feature of most pathovars of Pseudomonas syringae. Mol Plant Microb Interact 11:156–162

    Article  CAS  Google Scholar 

  23. Han SO, New PB (1998) Variation in nitrogen fixing ability among natural isolates of Azospirillum. Microb Ecol 36:193–201

    Article  CAS  PubMed  Google Scholar 

  24. Hartman A, Singh M, Klingmuler W (1983) Isolation and characterization of Azospirillum mutants excreting high amounts of indole acetic acid. Can J Microbiol 29:916–923

    Article  Google Scholar 

  25. Hatayama K, Kawai S, Shoun H, Ueda Y, Nakamura (2005) Pseudomonas azotifigens sp. nov., a novel nitrogen-fixing bacterium isolated from a compost pile. Int J Syst Evol Microbiol 55:1539–1544

    Article  CAS  PubMed  Google Scholar 

  26. Herridge DF, Peoples MB, Boddey RM (2008) Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311:1–18

    Article  CAS  Google Scholar 

  27. Heulin T, Berge O, Mavingui P, Gouzou L, Hebbar KP, Balandreau J (1994) Bacillus polymyxa and Rahnella aquatilis, the dominant N2 fixing bacteria associated with wheat rhizosphere in French soils. Eur J Soil Biol 30:25–42

    Google Scholar 

  28. Iniguez AL, Dong Y, Triplett EW (2004) Nitrogen fixation in wheat is provided by Klebsiella pneumoniae 342. Mol Plant Microb Interact 17:1078–1085

    Article  CAS  Google Scholar 

  29. Jha P, Kumar A (2009) Characterization of novel plant growth promoting endophytic bacterium Achromobacter xylosoxidans from wheat plants. Microb Ecol 58:179–188

    Article  CAS  PubMed  Google Scholar 

  30. Kaneko T, Minamisawa K, Isawa T, Nakatsukasa H, Mitsui H, Kawaharada Y, Nakamura Y, Watanabe A, Kawashima K, Ono A, Shimizu Y, Takahashi C, Minami C, Fujishiro T, Kohara M, Katoh M, Nakazaki N, Nakayama S, Yamada M, Tabata S, Sato S (2010) Complete genomic structure of the cultivated rice endophyte Azospirillum sp. B510. DNA Res 17:37–50

    Article  CAS  PubMed  Google Scholar 

  31. Kefalogianni I, Flouri F, Balis C (1995) Occurrence, isolation and identification of Azospirillum strains in Greece. NATO ASI series G ecological sciences. Azospirillum and related microorganisms: genetics-physiology-ecology, vol 37. Springer, Berlin, pp 461–466

    Google Scholar 

  32. Kennedy IR, Choudhury ATMA, Kecskes ML (2004) Non-symbiotic bacterial diazotrophs in crop-farming systems: can their potential for plant growth promotion be better exploited? Soil Biol Biochem 36:1229–1244

    Article  CAS  Google Scholar 

  33. Kennedy IR, Islam N (2001) The current and potential contribution of asymbiotic nitrogen fixation to nitrogen requirements on farms: a review. Aust J Exp Agric 41:447–457

    Article  CAS  Google Scholar 

  34. Khan MS, Zaidi A, Wani PA (2007) Role of phosphate-solubilizing microorganisms in sustainable agriculture—a review. Agron Sustain Dev 27:29–43

    Article  Google Scholar 

  35. Kim C, Kecskes ML, Deaker RJ, Gilchrst K, New PB, Kennedy IB, Kim S, Sa T (2005) Wheat root and nitrogenase activity by Azospirillum isolates from crop plants in Korea. Can J Microbiol 51:948–956

    Article  CAS  PubMed  Google Scholar 

  36. Kleeberger A, Castorph H, Klinmuller W (1983) The rhizosphere microflora of wheat and barley with special reference to gram-negative bacteria. Arch Microbiol 136:306–311

    Article  Google Scholar 

  37. Krotzky A, Werner D (1987) Nitrogen fixation in Pseudomonas stutzeri. Arch Microbiol 147:48–57

    Article  CAS  Google Scholar 

  38. Kulakov LA, McAlister OKL, Larkin MJ, O’Hanlon JF (2002) Analysis of bacteria contaminating ultrapure water in industrial systems. Appl Environ Microbiol 68:1548–1555

    Article  CAS  PubMed  Google Scholar 

  39. Kumar V, Naruala N (1999) Solubilization of inorganic phosphates and growth emergence of wheat as affected by Azotobacter chroococcum. Biol Fertil Soil 27:301–305

    Article  Google Scholar 

  40. Kundu BS, Batra R, Kharb P, Tauro P (1986) Dinitrogen fixation in wheat and characterization of associated diazotrophs. Proc Indian Acad Sci (Plant Sci) 96:9–15

    CAS  Google Scholar 

  41. Lund PA (2009) Multiple chaperonin in bacteria—why so many? FEMS Microbiol Rev 33:785–800

    Article  CAS  PubMed  Google Scholar 

  42. Mandira M, Srivastava S (2008) An ipdC knock-out of Azospirillum brasilense strain SM and its implication on indole-3-acetic acid biosynthesis and plant growth promotion. Ant van Leeuwenh 93:425–433

    Article  Google Scholar 

  43. Mehnaz A, Weselowski B, Lazarovits G (2007) Azospirillum canadense sp. nov., a nitrogen-fixing bacterium isolated from rhizosphere of Zea mays. Int J Syst Evol Microbiol 57:2805–2809

    Article  CAS  PubMed  Google Scholar 

  44. Mirza MS, Mehnaz S, Normand P, Prigent-Combaret C, Moenne-Loccoz Y, Bally R, Malik KA (2006) Molecular characterization and PCR-detection of a nitrogen-fixing Pseudomonas strain promoting rice growth. Biol Fertil Soil 43:136–170

    Article  Google Scholar 

  45. Neer PB, Kennedy IR (1989) Regional distribution and pH sensitivity of Azospirillum associated with wheat roots in Eastern Australia. Microb Ecol 17:299–309

    Article  Google Scholar 

  46. Park M, Kim C, Yang J, Lee H, Shin W, Kim S, Sa T (2005) Isolation and characterization of diazotrophic growth promoting bacteria from rhizosphere of agricultural crops of Korea. Microbiol Res 160:127–133

    Article  CAS  PubMed  Google Scholar 

  47. Poly F, Lucile LJ, Bally R (2001) Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Res Microbiol 152:95–103

    Article  CAS  PubMed  Google Scholar 

  48. Puehringer S, Metlitzky M, Schwarzenbacher R (2008) The pyrroloquinoline quinone biosynthesis pathway revisited: a structural approach. BMC Biochem 9:1–11

    Article  Google Scholar 

  49. Puende M-E, Bashan Y (1994) The desert epiphyte harbours the nitrogen-fixing bacterium Pseudomonas stutzeri. Can J Bot 72:406–408

    Article  Google Scholar 

  50. Rodriguez H, Gonzalez T, Goire I, Bashan Y (2004) Gluconic acid production and phosphate solubilization by plant growth-promoting bacterium Azospirillum spp. Naturwissensch 91:552–555

    Article  CAS  Google Scholar 

  51. Rodriguez-Caceres EA (1982) Improved medium for isolation of Azospirillum spp. Appl Environ Microbiol 44:990–991

    Google Scholar 

  52. Rothballer M, Schmid M, Hartmann A (2003) In situ localization and PGPR effect of Azospirillum brasilense strains colonizing roots of different wheat varieties. Symbiosis 34:261–27

    Google Scholar 

  53. Rothballer M, Schmid M, Klein I, Gattinger A, Grundmann S, Hartmann A (2006) Herbaspirillum hiltneri sp. nov., isolated from surfaced-sterilized wheat roots. Int J Syst Evol Microbiol 56:1341–1348

    Article  CAS  PubMed  Google Scholar 

  54. Sarwar M, Arshad M, Martens DA, Frankenberger WT Jr (1992) Tryphophan-depended biosynthesis of auxins in soil. Plant Soil 147:207–215

    Article  CAS  Google Scholar 

  55. Sashidhar B, Podile AR (2009) Transgenic expression of glucose dehydrogenase in Azotobacter vinelandii enhances mineral phosphate solubilization and growth of sorghum seedling. Microb Biotechnol 2:521–529

    Article  CAS  PubMed  Google Scholar 

  56. Somers E, Ptacek D, Gysemon P, Srinivasan M, Vanderleyden J (2005) Azospirillum brasilense produces the auxin-like phenylacetic acid by using the key enzyme for indole-3-acetic acid biosynthesis. Appl Environ Microbiol 71:1803–1810

    Article  CAS  PubMed  Google Scholar 

  57. Spaepen S, Vanderleyden J, Reimans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signalling. FEMS Microbiol Rev 31:425–448

    Article  CAS  PubMed  Google Scholar 

  58. Stackebrandt E, Ebers J (2006) Taxonomic parameters revisited tarnished gold standards. Microbiol Today 33:152–155

    Google Scholar 

  59. Stackebrandt E, Frederiksen W, Grimont GGM, PAD KP, Maiden MCJ, Nesme X, Rosseló-Mora R, Swings J, Truper HG, Vauterin L, Ward AC, Whitman WB (2002) Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1047

    Article  CAS  PubMed  Google Scholar 

  60. Steenhoudt O, Vanderleyden J (2000) Azospirillum a free living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24:487–506

    Article  CAS  PubMed  Google Scholar 

  61. Strepkowski T, Czaplinska M, Miedzinska K, Moulin L (2003) The variable part of the dnaK gene as an alternative Marker for phylogenetic studies in Rhizobia and related alpha proteobacteria. Syst Appl Microbiol 26:483–494

    Article  Google Scholar 

  62. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  63. Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci U S A 101:11030–11035

    Article  CAS  PubMed  Google Scholar 

  64. Upadhyay SK, Singh DP, Saikia R (2009) Genetic diversity of plant growth promoting rhizobacteria isolated from rhizospheric soil of wheat under saline conditions. Curr Microbiol 59:489–496

    Article  CAS  PubMed  Google Scholar 

  65. Vazquez P, Holguin G, Puente ME, Lopez-Cortes G, Bashan Y (2000) Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid lagoon. Biol Fertil Soils 30:460–468

    Article  CAS  Google Scholar 

  66. Vermeiren H, Willem A, Schoofs G, de Mot R, Keijers V, Hai W, Vandeleyden J (1999) The rice inoculant strain A15 is a nitrogen-fixing Pseudomonas stutzeri strain. Syst Appl Microbiol 22:215–224

    CAS  PubMed  Google Scholar 

  67. Vikram A, Alagawadi AR, Krishnaraj PU, Mahesh Kumar KS (2007) Transconjugation studies in Azospirillum sp. negative to mineral phosphate solubilization. World J Microbiol Biotechnol 23:1333–1337

    Article  CAS  Google Scholar 

  68. Vitorino L, Chelo IM, Bacellar F, Ze-Ze L (2007) Rickettsiae phylogeny: a multi approach. Microbiology 153:160–168

    Article  CAS  PubMed  Google Scholar 

  69. Weisburg WS, Barns SM, Pelletier DA, Lane DI (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    CAS  PubMed  Google Scholar 

  70. Yan Y, Yang J, Dou Y, Chen M, Ping S, Peng J, Lu W, Zhang W, Yao Z, Li H, Liu W, He S, Geng L, Zhang X, Yang F, Yu H, Zhan Y, Li D, Lin Z, Wang Y, Elmerich C, Lin M, Jin Q (2008) Nitrogen fixation island and rhizosphere competence traits in the genome of root-associated Pseudomonas stutzeri A1501. Proc Natl Acad Sci U S A 105:7564–7569

    Article  CAS  PubMed  Google Scholar 

  71. You CB, Song HX, Wang JP, Lin P, Hai WL (1991) Association of Alcaligenes faecalis with wetland rice. Plant Soil 137:81–85

    Article  Google Scholar 

  72. Zehr JP, Jenkins BD, Short SM, Steward GF (2003) Nitrogenase gene diversity and microbial community structure: a cross-system comparison. Environ Microbiol 5:539–554

    Article  CAS  PubMed  Google Scholar 

  73. Zimmer WM, Wesche M, Timmermans L (1998) Identification and isolation of the indole-3-pyruvate decarboxylase gene from Azospirillum brasilense Sp7 sequencing and functional analysis of the gene locus. Cur Microbiol 6:327–333

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panagiotis Katinakis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venieraki, A., Dimou, M., Pergalis, P. et al. The Genetic Diversity of Culturable Nitrogen-Fixing Bacteria in the Rhizosphere of Wheat. Microb Ecol 61, 277–285 (2011). https://doi.org/10.1007/s00248-010-9747-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-010-9747-x

Keywords

Navigation