Skip to main content
Log in

Competitiveness of Diverse Methylobacterium Strains in the Phyllosphere of Arabidopsis thaliana and Identification of Representative Models, Including M. extorquens PA1

  • Plant Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Facultative methylotrophic bacteria of the genus Methylobacterium are consistently found in association with plants, particularly in the phyllosphere. To gain a better understanding of the mechanisms underlying the dispersal and occurrence of Methylobacterium on plants, diverse strains were isolated, identified, and studied with regard to their competitiveness on the model plant Arabidopsis thaliana. As a basis for this study a comprehensive collection of Methylobacterium isolates was established. Isolates were obtained from five different naturally grown A. thaliana populations and diverse other plant genera at these and further sites. They were classified using automated ribosomal internal spacer analysis (ARISA) and a representative subset was identified based on 16S rRNA gene sequence analysis. A comparison of their ARISA patterns with those generated based on a cultivation-independent approach from the same sampling material confirmed that the isolates were abundant colonizers of the studied plants. In competition experiments, colonization efficiency of the strains was found to be linked to phylogeny, rather than to the geographical origin or plant genus from which they were isolated. The most competitive colonizers were related to the species Methylobacterium tardum and Methylobacterium extorquens. Higher cell numbers were observed in the phyllosphere of A. thaliana when a mixture of different strains was applied relative to inoculation with only one strain, suggesting partial niche heterogeneity. Based on the results of the competition experiments, representative strains with different colonization efficiencies were selected, which will serve as models in future studies aiming at a better understanding of plant colonization by this bacterial genus. Among them is the meanwhile genome-sequenced strain M. extorquens PA1, which represents a competitive species of plant colonizers with a broad dispersal. This strain was characterized in more detail including physiological, morphological, and chemotaxonomical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Abanda-Nkpwatt D, Müsch M, Tschiersch J, Boettner M, Schwab W (2006) Molecular interaction between Methylobacterium extorquens and seedlings: growth promotion, methanol consumption, and localization of the methanol emission site. J Exp Bot 57:4025–4032

    Article  CAS  PubMed  Google Scholar 

  2. Andreote FD, Carneiro RT, Salles JF, Marcon J, Labate C, Azevedo JL, Araujo WL (2009) Culture-independent assessment of Rhizobiales-related Alphaproteobacteria and the diversity of Methylobacterium in the rhizosphere and rhizoplane of transgenic Eucalyptus. Microb Ecol 57:82–93

    Article  PubMed  Google Scholar 

  3. Anesti V, Vohra J, Goonetilleka S, McDonald IR, Straubler B, Stackebrandt E, Kelly DP, Wood AP (2004) Molecular detection and isolation of facultatively methylotrophic bacteria, including Methylobacterium podarium sp. nov., from the human foot microflora. Environ Microbiol 6:820–830

    Article  CAS  PubMed  Google Scholar 

  4. Araujo WL, Marcon J, Maccheroni W Jr, Van Elsas JD, Van Vuurde JW, Azevedo JL (2002) Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. Appl Environ Microbiol 68:4906–4914

    Article  CAS  PubMed  Google Scholar 

  5. Austin B, Goodfellow M (1979) Pseudomonas mesophilica, a new species of pink bacteria isolated from leaf surfaces. Int J Syst Bacteriol 29:373–378

    Article  Google Scholar 

  6. Corpe WA, Rheem S (1989) Ecology of the methylotrophic bacteria on living leaf surfaces. FEMS Microbiol Ecol 62:243–249

    Article  CAS  Google Scholar 

  7. Delmotte N, Knief C, Chaffron S, Innerebner G, Roschitzki B, Schlapbach R, von Mering C, Vorholt JA (2009) Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc Natl Acad Sci U S A 106:16428–16433

    Article  CAS  PubMed  Google Scholar 

  8. Doronina NV, Sokolov AP, Trotsenko YA (1996) Isolation and initial characterization of aerobic chloromethane-utilizing bacteria. FEMS Microbiol Lett 142:179–183

    Article  CAS  Google Scholar 

  9. Elbeltagy A, Nishioka K, Suzuki H, Sato T, Sato YI, Morisaki H, Mitsui H, Minamisawa K (2000) Isolation and characterization of endophytic bacteria from wild and traditionally cultivated rice varieties. Soil Sci Plant Nutr 46:617–629

    Google Scholar 

  10. Felsenstein J (1993) PHYLIP: phylogeny inference package. University of Washington, Seattle

    Google Scholar 

  11. Fleischman D, Kramer D (1998) Photosynthetic rhizobia. Biochim Biophys Acta 1364:17–36

    Article  CAS  PubMed  Google Scholar 

  12. Galbally IE, Kirstine W (2002) The production of methanol by flowering plants and the global cycle of methanol. J Atmos Chem 43:195–229

    Article  CAS  Google Scholar 

  13. Gallego V, García MT, Ventosa A (2005) Methylobacterium hispanicum sp. nov. and Methylobacterium aquaticum sp. nov., isolated from drinking water. Int J Syst Evol Microbiol 55:281–287

    Article  CAS  PubMed  Google Scholar 

  14. Gourion B, Rossignol M, Vorholt JA (2006) A proteomic study of Methylobacterium extorquens reveals a response regulator essential for epiphytic growth. Proc Natl Acad Sci U S A 103:13186–13191

    Article  CAS  PubMed  Google Scholar 

  15. Gourion B, Francez-Charlot A, Vorholt JA (2008) PhyR is involved in the general stress response of Methylobacterium extorquens AM1. J Bacteriol 190:1027–1035

    Article  CAS  PubMed  Google Scholar 

  16. Green PN, Bousfield IJ, Hood D (1988) Three new Methylobacterium species: Methylobacterium rhodesianum sp. nov., Methylobacterium zatmanii sp. nov., and Methylobacterium fujisawaense sp. nov. Int J Syst Bacteriol 38:124–127

    Article  CAS  Google Scholar 

  17. Green PN (2006) Methylobacterium. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The Prokaryotes, vol 5. Springer, New York, pp 257–265

    Chapter  Google Scholar 

  18. Hasegawa M, Kishino H, Yano T (1985) Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174

    Article  CAS  PubMed  Google Scholar 

  19. Heumann W (1962) Die Methodik der Kreuzung sternbildender Bakterien. Biol Zentralbl 81:341–354

    Google Scholar 

  20. Holland MA, Long RLG, Polacco JC (2002) Methylobacterium spp.: Phylloplane bacteria involved in cross-talk with the plant host. In: Lindow SE, Hecht-Poinar EI, Elliott VJ (eds) Phyllosphere Microbiology. Minnesota, APS Press, St. Paul, pp 125–135

    Google Scholar 

  21. Idris R, Trifonova R, Puschenreiter M, Wenzel WW, Sessitsch A (2004) Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Appl Environ Microbiol 70:2667–2677

    Article  CAS  PubMed  Google Scholar 

  22. Ito H, Iizuka H (1971) Taxonomic studies on a radio-resistant Pseudomonas part XII. Studies on microorganisms of cereal grain. Agric Biol Chem 35:1566–1571

    Google Scholar 

  23. Jackson EF, Echlin HL, Jackson CR (2006) Changes in the phyllosphere community of the resurrection fern, Polypodium polypodioides, associated with rainfall and wetting. FEMS Microbiol Ecol 58:236–246

    Article  CAS  PubMed  Google Scholar 

  24. Jaftha JB, Strijdom BW, Steyn PL (2002) Characterization of pigmented methylotrophic bacteria which nodulate Lotononis bainesii. Syst Appl Microbiol 25:440–449

    Article  CAS  PubMed  Google Scholar 

  25. Kang YS, Kim J, Shin HD, Nam YD, Bae JW, Jeon CO, Park W (2007) Methylobacterium platani sp. nov., isolated from a leaf of the tree Platanus orientalis. Int J Syst Evol Microbiol 57:2849–2853

    Article  CAS  PubMed  Google Scholar 

  26. Kato Y, Asahara M, Arai D, Goto K, Yokota A (2005) Reclassification of Methylobacterium chloromethanicum and Methylobacterium dichloromethanicum as later subjective synonyms of Methylobacterium extorquens and of Methylobacterium lusitanum as a later subjective synonym of Methylobacterium rhodesianum. J Gen Appl Microbiol 51:287–299

    Article  CAS  PubMed  Google Scholar 

  27. Knief C, Frances L, Cantet F, Vorholt JA (2008) Cultivation-independent characterization of Methylobacterium populations in the plant phyllosphere by automated ribosomal intergenic spacer analysis. Appl Environ Microbiol 74:2218–2228

    Article  CAS  PubMed  Google Scholar 

  28. Knief C, Ramette A, Frances L, Alonso-Blanco C, Vorholt JA (2010) Site and plant species are important determinants of the Methylobacterium community composition in the plant phyllosphere. ISME J 4:719–728

    Article  CAS  PubMed  Google Scholar 

  29. Koenig RL, Morris RO, Polacco JC (2002) tRNA is the source of low-level trans-zeatin production in Methylobacterium spp. J Bacteriol 184:1832–1842

    Article  CAS  PubMed  Google Scholar 

  30. Kohler-Staub D, Hartmans S, Gälli R, Suter F, Leisinger T (1986) Evidence for identical dichloromethane dehalogenases in different methylotrophic bacteria. J Gen Microbiol 132:2837–2843

    CAS  Google Scholar 

  31. Kutschera U (2007) Plant-associated methylobacteria as co-evolved phytosymbionts. Plant Signal Behav 2:74–78

    PubMed  Google Scholar 

  32. Lambais MR, Crowley DE, Cury JC, Bull RC, Rodrigues RR (2006) Bacterial diversity in tree canopies of the Atlantic forest. Science 312:1917

    Article  CAS  PubMed  Google Scholar 

  33. Lee HS, Madhaiyan M, Kim CW, Choi SJ, Chung KY, Sa TM (2006) Physiological enhancement of early growth of rice seedlings (Oryza sativa L.) by production of phytohormone of N-2-fixing methylotrophic isolates. Biol Fertil Soils 42:402–408

    Article  CAS  Google Scholar 

  34. Lindow SE, Brandl MT (2003) Microbiology of the phyllosphere. Appl Environ Microbiol 69:1875–1883

    Article  CAS  PubMed  Google Scholar 

  35. Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar BA, Lai T, Steppi S, Jobb G, Förster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, König A, Liss T, Lüßmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckman N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371

    Article  CAS  PubMed  Google Scholar 

  36. Madhaiyan M, Kim BY, Poonguzhali S, Kwon SW, Song MH, Ryu JH, Go SJ, Koo BS, Sa TM (2007) Methylobacterium oryzae sp. nov., an aerobic, pink-pigmented, facultatively methylotrophic, 1-aminocyclopropane-1-carboxylate deaminase-producing bacterium isolated from rice. Int J Syst Evol Microbiol 57:326–331

    Article  CAS  PubMed  Google Scholar 

  37. Madhaiyan M, Poonguzhali S, Kwon SW, Sa TM (2009) Methylobacterium phyllosphaerae sp. nov., a pink-pigmented, facultative methylotroph from the phyllosphere of rice. Int J Syst Evol Microbiol 59:22–27

    Article  CAS  PubMed  Google Scholar 

  38. Mano H, Tanaka F, Nakamura C, Kaga H, Morisaki H (2007) Culturable endophytic bacterial flora of the maturing leaves and roots of rice plants (Oryza sativa) cultivated in a paddy field. Microbes Environ 22:175–185

    Article  Google Scholar 

  39. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  40. Norris D (1958) A red strain of Rhizobium from Lotononis bainesii Baker. Aust J Agric Res 9:629–632

    Article  Google Scholar 

  41. Omer ZS, Tombolini R, Broberg A, Gerhardson B (2004) Indole-3-acetic acid production by pink-pigmented facultative methylotrophic bacteria. Plant Growth Regul 43:93–96

    Article  CAS  Google Scholar 

  42. Peel D, Quayle JR (1961) Microbial growth on C1 compounds. I. Isolation and characterization of Pseudomonas AM 1. Biochem J 81:465–469

    CAS  PubMed  Google Scholar 

  43. Penalver CGN, Morin D, Cantet F, Saurel O, Milon A, Vorholt JA (2006) Methylobacterium extorquens AM1 produces a novel type of acyl-homoserine lactone with a double unsaturated side chain under methylotrophic growth conditions. FEBS Lett 580:561–567

    Article  Google Scholar 

  44. Pirttilä AM, Laukkanen H, Pospiech H, Myllylä R, Hohtola A (2000) Detection of intracellular bacteria in the buds of Scotch pine (Pinus sylvestris L.) by in situ hybridization. Appl Environ Microbiol 66:3073–3077

    Article  PubMed  Google Scholar 

  45. Pomini AM, Cruz PL, Gai C, Araujo WL, Marsaioli AJ (2009) Long-chain acyl-homoserine lactones from Methylobacterium mesophilicum: synthesis and absolute configuration. J Nat Prod 72:2125–2129

    Article  CAS  PubMed  Google Scholar 

  46. Poonguzhali S, Madhaiyan M, Sa T (2007) Production of acyl-homoserine lactone quorum-sensing signals is widespread in gram-negative Methylobacterium. J Microbiol Biotechnol 17:226–233

    CAS  PubMed  Google Scholar 

  47. Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glöckner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35:7188–7196

    Article  CAS  PubMed  Google Scholar 

  48. Rademaker JLW, Louws FJ, Versalovic J, de Bruijn FJ (2004) Characterization of the diversity of ecologically important microbes by rep-PCR genomic fingerprinting. In: Kowalchuk GA, de Bruijn FJ, Head IM, Akkermanns ADL, Van Elsas D (eds) Molecular microbial ecology manual. Kluwer Academic Publishers, Dordrecht, pp 611–644

    Google Scholar 

  49. Raja P, Balachandar D, Sundaram SP (2008) Genetic diversity and phylogeny of pink-pigmented facultative methylotrophic bacteria isolated from the phyllosphere of tropical crop plants. Biol Fertil Soils 45:45–53

    Article  Google Scholar 

  50. Rasche F, Trondl R, Naglreiter C, Reichenauer TG, Sessitsch A (2006) Chilling and cultivar type affect the diversity of bacterial endophytes colonizing sweet pepper (Capsicum anuum L.). Can J Microbiol 52:1036–1045

    Article  CAS  PubMed  Google Scholar 

  51. Ryu J, Madhaiyan M, Poonguzhali S, Yim W, Indiragandhi P, Kim K, Anandham R, Yun J, Kim KH, Sa T (2006) Plant growth substances produced by Methylobacterium spp. and their effect on tomato (Lycopersicon esculentum L.) and red pepper (Capsicum annuum L.) growth. J Microbiol Biotechnol 16:1622–1628

    CAS  Google Scholar 

  52. Samba RT, de Lajudie P, Gillis M, Neyra M, Spencer Barreto MM, Dreyfus B (1999) Diversity of rhizobia nodulating Crotalaria spp. from Senegal. Symbiosis 27:259–268

    Google Scholar 

  53. Schauer S, Kutschera U (2008) Methylotrophic bacteria on the surfaces of field-grown sunflower plants: a biogeographic perspective. Theory Biosci 127:23–29

    Article  CAS  PubMed  Google Scholar 

  54. Schloss PD, Handelsman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71:1501–1506

    Article  CAS  PubMed  Google Scholar 

  55. Schrader J, Schilling M, Holtmann D, Sell D, Villela M, Marx A, Vorholt JA (2009) Methanol-based industrial biotechnology: current status and future perspectives of methylotrophic bacteria. Trends Biotechnol 27:107–115

    Article  CAS  PubMed  Google Scholar 

  56. Somerville C, Koornneef M (2002) A fortunate choice: the history of Arabidopsis as a model plant. Nat Rev Genet 3:883–889

    Article  CAS  PubMed  Google Scholar 

  57. Sy A, Giraud E, Jourand P, Garcia N, Willems A, de Lajudie P, Prin Y, Neyra M, Gillis M, Boivin-Masson C, Dreyfus B (2001) Methylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. J Bacteriol 183:214–220

    Article  CAS  PubMed  Google Scholar 

  58. Sy A, Timmers AC, Knief C, Vorholt JA (2005) Methylotrophic metabolism is advantageous for Methylobacterium extorquens during colonization of Medicago truncatula under competitive conditions. Appl Environ Microbiol 71:7245–7252

    Article  CAS  PubMed  Google Scholar 

  59. Trotsenko YA, Ivanova EG, Doronina NV (2001) Aerobic methylotrophic bacteria as phytosymbionts. Microbiology (English translation of Mikrobiologiya) 70:623–632

    CAS  Google Scholar 

  60. Urakami T, Komagata K (1984) Protomonas, a new genus of facultatively methylotrophic bacteria. Int J Syst Bacteriol 34:188–201

    Article  CAS  Google Scholar 

  61. van Aken B, Yoon JM, Schnoor JL (2004) Biodegradation of nitro-substituted explosives 2, 4, 6-trinitrotoluene, hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine, and octahydro-1, 3, 5, 7-tetranitro-1, 3, 5-tetrazocine by a phytosymbiotic Methylobacterium sp. associated with poplar tissues (Populus deltoides x nigra DN34). Appl Environ Microbiol 70:508–517

    Article  PubMed  Google Scholar 

  62. Vuilleumier S, Chistoserdova L, Lee MC, Bringel F, Lajus A, Zhou Y, Gourion B, Barbe V, Chang J, Cruveiller S, Dossat C, Gillett W, Gruffaz C, Haugen E, Hourcade E, Levy R, Mangenot S, Muller E, Nadalig T, Pagni M, Penny C, Peyraud R, Robinson DG, Roche D, Rouy Z, Saenampechek C, Salvignol G, Vallenet D, Wu Z, Marx CJ, Vorholt JA, Olson MV, Kaul R, Weissenbach J, Medigue C, Lidstrom ME (2009) Methylobacterium genome sequences: a reference blueprint to investigate microbial metabolism of C1 compounds from natural and industrial sources. PLoS ONE 4:e5584

    Article  PubMed  Google Scholar 

  63. Wood AP, Kelly DP, McDonald IR, Jordan SL, Morgan TD, Khan S, Murrell JC, Borodina E (1998) A novel pink-pigmented facultative methylotroph, Methylobacterium thiocyanatum sp. nov., capable of growth on thiocyanate or cyanate as sole nitrogen sources. Arch Microbiol 169:148–158

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Centre National de la Recherche Scientifique and ETH Zurich. We acknowledge Carlos Alonso Blanco (CNB, CSIC Madrid, Spain) and Jean-Marie Prosperi (UMR 1097, INRA Montpellier, France) who showed us natural populations of A. thaliana and Medicago truncatula, respectively. We thank Pascaline Guillemot, Carlos Nieto Penalver (LIPM, Castanet-Tolosan, France), and Vanina Dengler (ETH Zurich, Switzerland) for their support with the characterization of M. extorquens PA1. Paul Bodelier (NIOO-KNAW, Maarssen, The Netherlands) is acknowledged for the identification of phospholipid fatty acids and Daniele Morin (LBCM Lorient, France) for LC-MS analysis of HSLs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Knief.

Electronic Supplementary Materials

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1.48 mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knief, C., Frances, L. & Vorholt, J.A. Competitiveness of Diverse Methylobacterium Strains in the Phyllosphere of Arabidopsis thaliana and Identification of Representative Models, Including M. extorquens PA1. Microb Ecol 60, 440–452 (2010). https://doi.org/10.1007/s00248-010-9725-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-010-9725-3

Keywords

Navigation