Skip to main content

Advertisement

Log in

Substitution by Inosine at the 3′-Ultimate and Penultimate Positions of 16S rRNA Gene Universal Primers

  • Notes and Short Communications
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Universal 16S rRNA gene primers (8F and 518R) bearing inosine substitutions at either the 3′-ultimate or the 3′-ultimate and penultimate base positions were exploited for the first time to study the bacterial community associated with coral polymicrobial Black Band Disease (BBD). Inosine-modified universal primer pairs display some shifting in the composition of 16S rRNA gene libraries, as well as expanding the observed diversity of a BBD bacterial community at the family/class level. Possible explanations for the observed shifts are discussed. These results thus point to the need for adopting multiple approaches in designing 16S rRNA universal primers for PCR amplification and subsequent construction of 16S rRNA gene libraries or pyrosequencing in the exploration of complex microbial communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

References

  1. Barneah O, Ben-Dov E, Kramarsky-Winter E, Kushmaro A (2007) Characterization of black band disease in Red Sea stony corals. Environ Microbiol 9:1995–2006

    Article  CAS  PubMed  Google Scholar 

  2. Batzer MA, Carlton JE, Deininger PL (1991) Enhanced evolutionary PCR using oligonucleotides with inosine at the 3'-terminus. Nucleic Acids Res 19:5081

    Article  CAS  PubMed  Google Scholar 

  3. Ben-Dov E, Shapiro OH, Siboni N, Kushmaro A (2006) Advantage of using inosine at the 3′ termini of 16S rRNA gene universal primers for the study of microbial diversity. Appl Environ Microbiol 72:6902–6906

    Article  CAS  PubMed  Google Scholar 

  4. Ben-Dov E, Kramarsky-Winter E, Kushmaro A (2009) An in situ method for cultivating microorganisms using a double encapsulation technique. FEMS Microbiol Ecol 68:363–371

    Article  CAS  PubMed  Google Scholar 

  5. Borneman J, Triplett E (1997) Molecular microbial diversity in soils from eastern Amazonia: evidence for unusual microorganisms and microbial population shifts associated with deforestation. Appl Environ Microbiol 63:2647–2653

    CAS  PubMed  Google Scholar 

  6. Brands B, Vianna ME, Seyfarth I, Conrads G, Horz H-P (2010) Complementary retrieval of16S rRNAgene sequences using broad-range primers with inosine at the 3'-terminus: implications for the study of microbial diversity. FEMS Microbiol Ecol 71:157–167

    Article  CAS  PubMed  Google Scholar 

  7. Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM et al (2009) The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:D141–D145

    Article  CAS  PubMed  Google Scholar 

  8. Cooney RP, Pantos O, Le Tissier DA, Barer MR, O’Donnell AG, Bythell JC (2002) Characterization of the bacterial consortium associated with black band disease in coral using molecular microbiological techniques. Environ Microbiol 4:401–413

    Article  PubMed  Google Scholar 

  9. Engelbrektson A, Kunin V, Wrighton KC, Zvenigorodsky N, Chen F, Ochman H, Hugenholtz P (2010) Experimental factors affecting PCR-based estimates of microbial species richness and evenness. ISME J 4:642–647

    Article  CAS  PubMed  Google Scholar 

  10. Frias-Lopez J, Zerkle AL, Boneheyo GT, Fouke BW (2002) Partitioning of bacterial communities between sea water and healthy, black band diseased, and dead coral surfaces. Appl Environ Microbiol 68:2214–2228

    Article  CAS  PubMed  Google Scholar 

  11. Garren M, Smriga S, Azam F (2008) Gradients of coastal fish farm effluents and their effect on coral reef microbes. Environ Microbiol 10:2299–2312

    Article  CAS  PubMed  Google Scholar 

  12. Hong SH, Bunge J, Leslin C, Jeon S, Epstein SS (2009) Polymerase chain reaction primers miss half of rRNA microbial diversity. ISME J 3:1365–1373

    Article  CAS  PubMed  Google Scholar 

  13. Huber T, Faulkner G, Hugenholtz P (2004) Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20:2317–2319

    Article  CAS  PubMed  Google Scholar 

  14. Kilpatrick DR, Nottay B, Yang CF, Yang SJ, Mulders MN, Holloway BP, Pallansch MA, Kew OM (1996) Group-specific identification of polioviruses by PCR using primers containing mixed-base or deoxyinosine residues at positions of codon degeneracy. J Clin Microbiol 34:2990–2996

    CAS  PubMed  Google Scholar 

  15. Kumar S, Tomura K, Nei M (2004) MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  CAS  PubMed  Google Scholar 

  16. Kwok S, Kellogg DE, McKinney N, Spasic D, Goda L, Levenson C, Sninsky JJ (1990) Effects of primer-template mismatches on the polymerase chain reaction: human immunodeficiency virus type 1 model studies. Nucleic Acids Res 18:999–1005

    Article  CAS  PubMed  Google Scholar 

  17. Maidak BL, Cole JR, Parker CT Jr, Garrity GM, Larsen N, Li B, Lilburn TG, McCaughey MJ, Olsen GJ, Overbeek R, Pramanik S, Schmidt TM, Tiedje JM, Woese CR (1999) A new version of the RDP (Ribosomal Database Project). Nucleic Acids Res 27:171–173

    Article  CAS  PubMed  Google Scholar 

  18. Martin FH, Castro MM, Aboul-ela F, Tinoco I Jr (1985) Base pairing involving deoxyinosine: implications for probe design. Nucleic Acids Res 13:8927–8938

    Article  CAS  PubMed  Google Scholar 

  19. McCaig AE, Glover LA, Prosser JI (1999) Molecular analysis of bacterial community structure and diversity in unimproved and improved upland grass pastures. Appl Environ Microbiol 65:1721–1730

    CAS  PubMed  Google Scholar 

  20. Mohamed NM, Enticknap JJ, Lohr JE, McIntosh SM, Hill RT (2008) Changes in bacterial communities of the marine sponge Mycale laxissima on transfer into aquaculture. Appl Environ Microbiol 74:1209–1222

    Article  CAS  PubMed  Google Scholar 

  21. Mohamed NM, Rao V, Hamann MT, Kelly M, Hill RT (2008) Monitoring bacterial diversity of the marine sponge Ircinia strobilina upon transfer into aquaculture. Appl Environ Microbiol 74:4133–4143

    Article  CAS  PubMed  Google Scholar 

  22. Rossolini GM, Cresti S, Ingianni A, Cattani P, Riccio ML, Satta G (1994) Use of deoxyinosine-containing primers vs degenerate primers for polymerase chain reaction based on ambiguous sequence information. Mol Cell Probes 8:91–98

    Article  CAS  PubMed  Google Scholar 

  23. Sarkar G, Cassady J, Bottema CDK, Sommer SS (1990) Characterization of polymerase chain reaction amplification of specific alleles. Anal Biochem 186:64–68

    Article  CAS  PubMed  Google Scholar 

  24. Schloss PD, Handelsman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71:1501–1506

    Article  CAS  PubMed  Google Scholar 

  25. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ et al (2009) Introducing MOTHUR: open source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  CAS  PubMed  Google Scholar 

  26. Sekar R, Kaczmarsky LT, Richardson LL (2008) Microbial community composition of black band disease on the coral host Siderastrea siderea from three regions of the wider Caribbean. Mar Ecol Prog Ser 362:85–98

    Article  CAS  Google Scholar 

  27. Sekar R, Kaczmarsky LT, Richardson LL (2009) Effect of Freezing on PCR Amplification of 16S rRNA genes from microbes associated with black band disease of corals. Appl Environ Microbiol 75:2581–2584

    Article  CAS  PubMed  Google Scholar 

  28. Sunagawa S, DeSantis TZ, Piceno YM, Brodie EL, DeSalvo MK, Voolstra CR, Weil E, Andersen GL, Medina M (2009) Bacterial diversity and white plague disease-associated community changes in the Caribbean coral Montastraea faveolata. ISME J 3:512–521

    Article  CAS  PubMed  Google Scholar 

  29. Watanabe K, Kodama Y, Harayama S (2001) Design and evaluation of PCR primers to amplify 16S ribosomal DNA fragments used for community fingerprinting. J Microbiol Methods 44:253–262

    Article  CAS  PubMed  Google Scholar 

  30. Watkins NE Jr, SantaLucia J Jr (2005) Nearest-neighbor thermodynamics of deoxyinosine pairs in DNA duplexes. Nucleic Acids Res 33:6258–6267

    Article  CAS  PubMed  Google Scholar 

  31. White BA (1993) PCR protocols, current methods and applications. Totowa, New Jersey, Humana Press

    Book  Google Scholar 

  32. Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This investigation was supported by a grant (1167/07) from the Israel Science Foundation and by Levi Eshkol scholarships (to N.S. and O.H.S.) from the Israeli Ministry of Science, Culture and Sports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ariel Kushmaro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ben-Dov, E., Siboni, N., Shapiro, O.H. et al. Substitution by Inosine at the 3′-Ultimate and Penultimate Positions of 16S rRNA Gene Universal Primers. Microb Ecol 61, 1–6 (2011). https://doi.org/10.1007/s00248-010-9718-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-010-9718-2

Keywords

Navigation