Skip to main content

Advertisement

Log in

Social Amoebae: Environmental Factors Influencing Their Distribution and Diversity Across South-Western Europe

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The social amoebae (dictyostelids) are the only truly multicellular lineage within the superkingdom Amoebozoa, the sister group to Ophistokonts (Metazoa+Fungi). Despite the exceptional phylogenetic and evolutionary value of this taxon, the environmental factors that determine their distribution and diversity are largely unknown. We have applied statistical modeling to a set of data obtained from an extensive and detailed survey in the south-western of Europe (The Iberian Peninsula including Spain and Portugal) in order to estimate some of the main environmental factors influencing the distribution and diversity of dictyostelid in temperate climates. It is the first time that this methodology is applied to the study of this unique group of soil microorganisms. Our results show that a combination of climatic (temperature, water availability), physical (pH) and vegetation (species richness) factors favor dictyostelid species richness. In the Iberian Peninsula, dictyostelid diversity is highest in colder and wet environments, indicating that this group has likely diversified in relatively cold places with high levels of water availability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Baldauf SL, Doolittle WF (1997) Origin and evolution of the slime molds (Mycetozoa). Proc Natl Acad Sci USA 94:12007–12012

    Article  CAS  PubMed  Google Scholar 

  2. Baldauf SL, Roger AJ, Wenk-Siefert I, Doolittle WF (2000) A kingdom-level phylogeny of eukariotes based on combined protein data. Science 290:972–977

    Article  CAS  PubMed  Google Scholar 

  3. Bapteste E, Brinkmann H, Lee JA, Moore DV, Sensen CW, Gordon P et al (2002) The analysis of 100 genes supports the grouping of three highly divergent amoebae: Dictyostelium, Entamoeba, and Mastigamoeba. Proc Natl Acad Sci USA 99:1414–1419

    Article  CAS  PubMed  Google Scholar 

  4. Bonner JT (2009) The Social Amoebae: The Biology of Cellular Slime Molds. Princeton Univ. Press, Princeton, N.J., p 156

    Google Scholar 

  5. Cavender JC (1969) The occurrence and distribution of Acrasieae in forest soils I. Europe. Am J Bot 56:989–992

    Article  Google Scholar 

  6. Cavender JC (1969) The occurrence and distribution of Acrasieae in forest soils. II. East Africa. Am J Bot 56:993–998

    Article  Google Scholar 

  7. Cavender JC (1972) Cellular slime molds in forest soils of eastern Canada. Can J Bot 50:1499–1501

    Article  Google Scholar 

  8. Cavender JC, Kawabe K (1989) Cellular slime molds of Japan. I. Distribution and biogeographical considerations. Mycologia 81:683–691

    Article  Google Scholar 

  9. Cavender JC, Raper KB (1965) The Acrasieae in nature. II. Forest soil as a primary habitat. Am J Bot 52:297–302

    Article  CAS  PubMed  Google Scholar 

  10. Cavender JC, Raper KB (1965) The Acrasieae in nature. III. Ocurrence and distribution in forest of Eastern North America. Am J Bot 52:302–308

    Article  CAS  PubMed  Google Scholar 

  11. Cavender JC, Raper KB (1968) The ocurrence and distribution of Acrasieae in forests of subtropical and tropical America. Am J Bot 55:504–513

    Article  Google Scholar 

  12. Cavender JC, Cavender-Bares J, Hohl HR (1995) Ecological distribution of slime molds in forest soils of Germany. Bot Helv 105:199–219

    Google Scholar 

  13. Cook RD, Croos-Dabrera R (1998) Partial residual plots in generalized linear models. J Am Stat Assoc 93:730–739

    Article  Google Scholar 

  14. Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci USA 103:626–631

    Article  CAS  PubMed  Google Scholar 

  15. Fiore-Donno AM, Nikolaev SI, Nelson M, Pawlowski J, Cavalier-Smith T, Baldauf SL (2010) Deep Phylogeny and evolution of slime moulds (Mycetozoa). Protist 161:55–70

    Article  CAS  PubMed  Google Scholar 

  16. Hagiwara H (1989) The taxonomic study of Japanese dictyostelid cellular slime molds. National Science Museum, Tokyo

    Google Scholar 

  17. Hillebrand H (2004) On the generality of the latitudinal diversity gradient. Am Nat 163:192–211

    Article  PubMed  Google Scholar 

  18. Hunter MD, Price PW (1992) Playing chutes and ladders: heterogeneity and the relative roles of bottom-up and top-down forces in natural communities. Ecology 73:724–732

    Google Scholar 

  19. Ionescu M, Beranova K, Dudkova V, Kochankova L, Demnerova K, Macek T, Mackova M (2009) Isolation and characterization of different plant associated bacteria and their potential. Int Biodeterior Biodegradation 63:667–672

    Article  CAS  Google Scholar 

  20. Keeling PJ, Doolittle WF (1996) Alpha-tubulin from early-diverging eukaryotic lineages and the evolution of the tubulin family. Mol Biol Evol 13:1297–1305

    CAS  PubMed  Google Scholar 

  21. Kessin RH (2001) Dictyostelium: evolution, cell biology, and the development of multicellularity. Cambridge University Press, Cambridge

    Book  Google Scholar 

  22. Lado C (2008) Eumycetozoa.com: nomenclatural database of Eumycetozoa (Myxomycota) (Oct 2007 version). In Bisby FA, Roskov YR, Orrell TM, Nicolson D, Paglinawan LE, Bailly N, Kirk, PM, Bourgoin T, van Hertum J (eds) Species 2000 and ITIS Catalogue of Life: 2008 Annual Checklist CD-ROM. Reading, UK

  23. Landolt JC, Stephenson SL, Slay ME (2006) Dictyostelid cellular slime molds from caves. J Caves Karst Stud 68:22–26

    Google Scholar 

  24. Lauber CL, Hamady M, Knight R, Fierer N (2009) Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol 75:5111–5120

    Article  CAS  PubMed  Google Scholar 

  25. Legendre P (1993) Spatial autocorrelation: trouble or a new paradigm? Ecology 74:1659–1673

    Article  Google Scholar 

  26. Leitner A: Acrasiales in Geschadigtn Waldern. Thesis, Universitat Konstanz, Switzerland (1987)

  27. Lindow SE, Brandl MT (2003) Microbiology of the phyllosphere. Appl Environ Microbiol 69:1875–1883

    Article  CAS  PubMed  Google Scholar 

  28. Lozupone CA, Knight R (2007) Global patterns in bacterial diversity. Proc Natl Acad Sci USA 104:11436–1140

    Article  CAS  PubMed  Google Scholar 

  29. Mittelbach GG, Schemske DW, Cornell HV, Allen AP, Brown JM, Bush MB et al (2007) Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecol Lett 10:315–331

    Article  PubMed  Google Scholar 

  30. Moya-Laraño J (2010) Can temperature and water availability contribute to the maintenance of latitudinal diversity by increasing the rate of biotic interactions? The Open Ecology Journal 3:1–13

    Article  Google Scholar 

  31. Moya-Laraño J, Corcobado G (2008) Plotting partial correlation and regression in ecological studies. Web Ecology 8:35–46

    Google Scholar 

  32. Moya-Laraño J, Wise DH (2007) Two simple strategies of analysis to increase the power of experiments with multiple response variables. Basic Appl Ecol 8:398–410

    Article  Google Scholar 

  33. Ninyerola M, Pons X, Roure JM (2005) Atlas Climático Digital de la Península Ibérica. Metodología y aplicaciones en bioclimatología y geobotánica. Universidad Autónoma de Barcelona, Bellaterra. ISBN 932860-8-7

    Google Scholar 

  34. Pearce J, Ferrier S (2001) The practical value of modelling relative abundance of species for regional conservation planning: a case study. Biol Conserv 98:33–43

    Article  Google Scholar 

  35. Raper KB (1984) The Dictyostelids. Princeton University Press, Princeton

    Google Scholar 

  36. R Development Core Team. R: A language and environment for statistical computing. http://www.R-project.org (2009). Vienna, Austria, Accessed April 2010

  37. Ricklefs RE, Schluter D (1993) Species diversity: regional and historical influences. In: Ricklefs RE, Schluter D (eds) Species diversity in ecological communities. Univ. of Chicago Press, Chicago, pp 350–363

    Google Scholar 

  38. Romeralo M, Lado C (2006) Dictyostelids from Mediterranean forests of the south of Europe. Mycol Prog 5:231–241

    Article  Google Scholar 

  39. Romeralo M, Lado C (2008) The biodiversity of Dictyostelids in a Spanish Biosphere Reserve. Nova Hedwig 87:247–259

    Article  Google Scholar 

  40. Romeralo M, Escalante R, Sastre L, Lado C (2007) Molecular systematics of dictyostelids: 5.8S ribosomal DNA and internal transcribed spacer region analyses. Eukaryot Cell 6:110–116

    Article  CAS  PubMed  Google Scholar 

  41. Romeralo M, Cavender JC, Baldauf S (2009) A new species of cellular slime molds from southern Portugal based on morphology ITS and SSU sequences. Mycologia 101:269–274

    Article  CAS  PubMed  Google Scholar 

  42. Rosenzweig ML (1995) Species diversity in space and time. Cambridge Univ. Press, Cambridge

    Book  Google Scholar 

  43. Schaap P, Winckler T, Nelson M, Álvarez-Curto E, Elgie B, Hagiwara H et al (2006) Molecular phylogeny and evolution of morphology in the social amoebas. Science 314:661–663

    Article  CAS  PubMed  Google Scholar 

  44. Schnittler M (2001) Ecology of myxomycetes of a winter-cold desert in western Kazakhstan. Mycologia 93:653–669

    Article  Google Scholar 

  45. Schnittler M, Stephenson SL (2000) Myxomycete biodiversity in four different forest types in Costa Rica. Mycologia 92:626–637

    Article  Google Scholar 

  46. Stechmann A, Cavalier-Smith TC (2003) The root of the eukaryote tree pinpointed. Curr Biol 13:R665–R666

    Article  CAS  PubMed  Google Scholar 

  47. Swanson AR, Vadell EM, Cavender JC (1999) Global distribution of forest soil dictyostelids. J Biogeogr 26:133–148

    Article  Google Scholar 

  48. Traub HP, Hohl HR, Cavender JC (1981) Cellular slime molds of Switzerland. I. Description of new species. Am J Bot 68:162–171

    Article  Google Scholar 

  49. Traub HP, Hohl HR, Cavender JC (1981) Cellular slime molds of Switzerland. II. Distribution in forest soils. Am J Bot 68:172–182

    Article  Google Scholar 

  50. Willig MR, Kaufman DM, Stevens RD (2003) Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis. Ann Rev Ecol Evol Systemat 34:273–309

    Article  Google Scholar 

  51. Yang CH, Crowley DE, Borneman J, Keen NT (2001) Microbial phyllosphere populations are more complex than previously realized. Proc Nat Acad Sci USA 98:3889–3894

    Article  CAS  PubMed  Google Scholar 

  52. Yergeau E, Bezemer TM, Hedlund K, Mortimer SR, Kowalchuk GA, van der Putten WH (Published online: Sept. 16, 2009) Influences of space, soil nematodes and plants on microbial community composition of chalk grassland soils. Environ Microbiol (in press)

Download references

Acknowledgements

We want to thank María Aguilar (Royal Botanical Garden, Madrid) for the help with the species accumulation curve and Allison Perrigo (EBC, Uppsala University, Sweden) for the linguistic assistance. This research was supported by a postdoctoral fellowship from the Ministry of Science and Innovation of Spain (0027-2007) to M. Romeralo, with funding also coming from the project CGL2005-00320/BOS and CGL2008-0720/BOS of this Ministry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Romeralo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romeralo, M., Moya-Laraño, J. & Lado, C. Social Amoebae: Environmental Factors Influencing Their Distribution and Diversity Across South-Western Europe. Microb Ecol 61, 154–165 (2011). https://doi.org/10.1007/s00248-010-9715-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-010-9715-5

Keywords

Navigation