Skip to main content
Log in

Epibiosis of Oxygenic Phototrophs Containing Chlorophylls a, b, c, and d on the Colonial Ascidian Cystodytes dellechiajei

  • Notes and Short Communications
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The external surfaces of marine animals are colonized by a wide variety of epibionts. Here, we study the phototrophic epibiotic community attached to the colonial ascidian Cystodytes dellechiajei collected in the Mediterranean Sea. Epifluorescence microscopy analysis showed abundant filamentous cyanobacteria on the upper and basal parts of the ascidian that displayed autofluorescence, as well as some unicellular cyanobacteria, diatoms, and structures, which could belong to microscopic rhodophyte algae. In addition, high-performance liquid chromatography of the photosynthetic pigments confirmed that the phototrophic epibionts possess chlorophyll (Chl) d, as well as Chl a, b, and c, which enable them to use far-red light for photosynthesis in that peculiar microenvironment. Furthermore, laser scanning confocal microscopy showed the presence of a few small patches of cells on the basal part of the ascidian displaying fluorescence between 700 and 750 nm after excitement with a 635-nm red laser, typically within the range of Chl d. Denaturing gradient gel electrophoresis of the 16S rRNA gene polymerase chain reaction amplified using specific primers for Cyanobacteria detected sequences related with the genera Planktothricoides, Synechococcus, Phormidium, and Myxosarcina, as well as sequences of chloroplasts of diatoms and rhodophyte algae. Remarkably, only the sequences related to the filamentous cyanobacteria Planktothricoides spp. and some chloroplast sequences were found in almost all specimens collected under different macroecological conditions and geographical areas, suggesting thus certain specificity in the epibiotic association. On the other hand, Prochloron spp. and Acaryochloris marina, typically associated to tropical ascidians, were not detected by denaturing gradient gel electrophoresis. However, given the low abundance of cells displaying Chl d in C. dellechiajei and the fact that molecular fingerprinting techniques not always recover low abundance groups, the presence of these cyanobacteria cannot be ruled out. Nevertheless, our data indicate that tropical ascidians and C. dellechiajei differ in their phototrophic communities, although Chl d-containing cells are present in both microenvironments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

References

  1. Nakanishi K, Nishijima M, Nomoto AM, Yamazali A, Saga N (1999) Requisite morphologic interaction for attachment between Ulva pertusa (Chlorophyta) and symbiotic bacteria. Mar Biotech 1:107–111

    Article  CAS  Google Scholar 

  2. Harder T (2008) Marine epibiosis: concepts, ecological consequences and host defence. In: Flemming HC, Murthy SP, Cooksey K (eds) Marine and industrial biofouling. Springer, New York

    Google Scholar 

  3. Wahl M (2008) Ecological lever and interface ecology: epibiosis modulates the interactions between host and environment. Biofouling 6:427–438

    Article  Google Scholar 

  4. Martínez-García M, Díaz-Valdés M, Wanner G, Ramos-Esplá A, Antón J (2007) Microbial community associated with the colonial ascidian Cystodytes dellechiajei. Environ Microbiol 9:521–534

    Article  PubMed  Google Scholar 

  5. Martínez-García M, Stief P, Díaz-Valdés M, Wanner G, Ramos-Esplá A, Dubilier N, Antón J (2008) Ammonia-oxidizing Crenarchaeota and nitrification inside the tissue of a colonial ascidian. Environ Microbiol 10:2991–3001

    Article  PubMed  Google Scholar 

  6. Van Heukelem L, Thomas CS (2001) Computer-assisted high-performance liquid chromatography method development with applications to the isolation and analysis of phytoplankton pigments. J Chromatogr A 910:31–49

    Article  PubMed  Google Scholar 

  7. Scheer H (2003) The pigments in light-harvesting antennas in photosynthesis. In: Green BR, Parson WW (eds) Advances in photosynthesis. Kluwer Academic Publishers, Dordrecht, pp 29–81

    Google Scholar 

  8. Akimoto S, Marakami A, Yokono M, Koyama K, Tsuchiya T, Miyashita H, Yamazaki I, Mimuro M (2006) Fluorescence properties of the chlorophyll d-dominated cyanobacterium Acaryochloris sp. strain Awaji. J Photoch Photobio A 178:122–129

    Article  CAS  Google Scholar 

  9. Hu Q, Miyashita H, Iwasaki II, Kurano N, Miyachi S, Iwaki M, Itoh S (1998) A photosystem I reaction center driven by chlorophyll d in oxygenic photosynthesis. Proc Natl Acad Sci USA 95:13319–13323

    Article  CAS  PubMed  Google Scholar 

  10. Miyashita H, Ikemoto H, Kurano N, Miyachi S, Chihara M (2003) Acaryochloris marina gen et sp Nov (cyanobacteria), an oxygenic photosynthetic prokaryote containing Chl d as a major pigment. J Phycol 39:1247–1253

    Article  CAS  Google Scholar 

  11. Murakami A, Miyashita H, Iseki M, Adachi K, Mimuro M (2004) Chlorophyll d in an epiphytic cyanobacterium growing on red algae. Science 303:1633

    Article  CAS  PubMed  Google Scholar 

  12. Swingley WD, Chen M, Cheung PC, Conrad AL, Dejesa LC, Hao J, Honchak BM, Karbach LE, Kurdoglu A, Lahiri S, Mastrian SD, Miyashita H, Page L, Ramakrishna P, Satoh S, Sattley MW, Shimada Y, Taylor HL, Tomo T, Tsuchiya T, Wang ZT, Raymond J, Mimuro M, Blankenship RE, Touchman JW (2008) Niche adaptation and genome expansion in the chlorophyll d-producing cyanobacterium Acaryochloris marina. Proc Natl Acad Sci USA 105:2005–2010

    Article  CAS  PubMed  Google Scholar 

  13. Chan YW, Nenninger A, Clokie SJH, Mann NH, Scanlan DJ, Whitworth AL, Clokie MRJ (2007) Pigment composition and adaptation in free-living and symbiotic strains of Acaryochloris marina. FEMS Microbiol Ecol 61:65–73

    Article  CAS  PubMed  Google Scholar 

  14. Nübel U, Garcia-Pichel F, Muyzer G (1997) PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl Environ Microbiol 63:3327–3332

    PubMed  Google Scholar 

  15. Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar BA, Lai T, Steppi S, Jobb G, Förster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, König A, Liss T, Lüßmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH (2004) ARB: a software environment for sequence data. Nucleic Acid Res 32:1363–1371

    Article  CAS  PubMed  Google Scholar 

  16. Kühl M, Chen M, Ralph P, Schreiber U, Larkum AWD (2005) Ecology: a niche for cyanobacteria containing chlorophyll d. Nature 433:820

    Article  PubMed  Google Scholar 

  17. Miller SR, Augustine S, Olson TL, Blankenship RE, Selker J, Wood AM (2005) Discovery of a free-living chlorophyll d-producing cyanobacterium with a hybrid proteobacterial/cyanobacterial small-subunit rRNA gene. Proc Natl Acad Sci USA 102:850–855

    Article  CAS  PubMed  Google Scholar 

  18. de los Rios A, Grube M, Sancho LG, Ascaso C (2007) Ultrastructural and genetic characteristics of endolithic cyanobacterial biofilms colonizing Antarctic granite rocks. FEMS Microbiol Ecol 59:386–395

    Article  PubMed  Google Scholar 

  19. Kashiyama Y, Miyashita H, Ohkubo S, Ogawa NO, Chikaraishi Y, Takano Y, Suga H, Toyofuku T, Nomaki H, Kitazato H, Negata T, Ohkouchi N (2008) Evidence of global Chlorophyll d. Science 321:658

    Article  CAS  PubMed  Google Scholar 

  20. Ohkubo S, Miyashita H, Murakami A, Takeyama H, Tsuchiya T, Mimuro M (2006) Molecular detection of epiphytic Acaryochloris spp. on marine microalgae. Appl Environ Microbiol 72:7912–7915

    Article  CAS  PubMed  Google Scholar 

  21. Martinez-García M, Diaz-Valdés M, Ramos-Esplá A, Salvador N, Lopez P, Larriba E, Antón J (2007) Cytotoxicity of the ascidian Cystodytes dellechiajei against tumor cells and study of the involvement of associated microbiota in the production of cytotoxic compounds. Mar Drugs 5:52–70

    PubMed  Google Scholar 

  22. Pedrós-Alió C (2006) Marine microbial diversity: can it be determined? Trends Microbiol 14:257–263

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This project was funded by the Grant CGL2006-12714-CO2-01 from the Spanish Ministry of Science. We thank Dr. Alfonso Ramos Esplá, Marta Díaz Valdés, and Dr. Xavier Turon for their help with sampling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Martínez-García.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martínez-García, M., Koblížek, M., López-Legentil, S. et al. Epibiosis of Oxygenic Phototrophs Containing Chlorophylls a, b, c, and d on the Colonial Ascidian Cystodytes dellechiajei . Microb Ecol 61, 13–19 (2011). https://doi.org/10.1007/s00248-010-9694-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-010-9694-6

Keywords

Navigation