Abstract
This study is aimed to assess the formation of photosynthetic biofilms on and within different natural stone materials, and to analyse their biogeophysical and biogeochemical deterioration potential. This was performed by means of artificial colonisation under laboratory conditions during 3 months. Monitoring of microbial development was performed by image analysis and biofilm biomass estimation by chlorophyll extraction technique. Microscopy investigations were carried out to study relationships between microorganisms and the mineral substrata. The model applied in this work corroborated a successful survival strategy inside endolithic microhabitat, using natural phototrophic biofilm cultivation, composed by cyanobacteria and algae, which increased intrinsic porosity by active mineral dissolution. We observed the presence of mineral-like iron derivatives (e.g. maghemite) around the cells and intracellularly and the precipitation of hausmannite, suggesting manganese transformations related to the biomineralisation.
This is a preview of subscription content, access via your institution.












References
Alakomi HL, Arrien N, Gorbushina AA, Krumbein WE, Maxwell I, McCullagh C, Robertson P, Ross N, Saarela M, Valero J, Vendrell M, Young ME (2004) Inhibitors of biofilm damage on mineral materials (Biodam). In: Kwiatkowski D, Löfvendahl R (eds) Proceedings of the 10th International Congress on Deterioration and Conservation of Stone. ICOMOS, Stockholm, pp 399–406
Ariño X, Hernandez-Marine M, Saiz-Jimenez C (1997) Colonization of Roman tombs by calcifying cyanobacteria. Phycologia 36:366–373
Ascaso C, Wierzchos J, Castello R (1998) Study of the biogenic weathering of calcareous litharenite stones caused by lichen and endolithic microorganisms. Int Biodeterior Biodegrad 42:29–38
Ascaso C, Wierzchos J, Souza-Egipsy V, De los Ríos A, Delgado Rodrigues J (2002) In situ evaluation of the biodeteriorating action of microorganisms and the effects of biocides on carbonate rock of the Jeronimos Monastery (Lisbon). Int Biodeterior Biodegrad 49:1–12
Bargar JR, Tebo BM, Pecher KH, Chiu V, Villinski JE, Tonner BP (2000) Kinetics and products on Mn oxide biomineralization by spores of the marine Bacillus sp. strain-1. Symposia papers presented before the division of Environment Chemistry American Chemical Society 40(2):491–493
Bartolini M, Ricci S, Del Signore G (2004) Release of photosynthetic pigments from epilithic biocenosis alter biocida treatments. In: Kwiatkowski D, Löfvendahl R (eds) Proceedings of the 10th International Congress on Deterioration and Conservation of Stone. ICOMOS, Stockholm, pp 519–526
Bell RA (1993) Cryptoendolithic algae of hot semiarid lands and deserts. J Phycol 29:133–139
Bellinzoni AM, Caneva G, Ricci S (2003) Ecological trends in travertine colonisation by pioneer algae and plant communities. Int Biodeterior Biodegrad 51:203–210
Brown G (1980) Associated minerals. In: Brindley GW, Brown G (eds) Crystal structures of clay minerals and their X-ray identification, vol 5. Mineralogical Society, London, pp 361–410
Büdel B, Weber B, Kühl M, Pfanz H, Sültemeyer D, Wessels D (2004) Reshaping of sandstone surfaces by cryptoendolithic cyanobacteria: bioalkalization causes chemical weathering in arid landscapes. Geobiology 3:261–268
Caneva G, Nugari MP, Salvadori O (1991) Biology in the conservation of work of art. ICCROM, Rome, p 182
De Los Ríos A, Galván V, Ascaso C (2004) In situ microscopical diagnosis of biodeterioration processes at the convent of Santa Cruz la Real, Segovia, Spain. Int Biodeterior Biodegrad 54:113–120
De Los Ríos A, Ascaso C (2005) Contributions of in situ microscopy to the current understanding of stone biodeterioration. Int Microbiol 8:181–188
Dixon J (1977) Minerals in soil environments. Soil Science Society of America, Wisconsin
Dorn R (1998) Rock coatings. Developments in Earth Surface Processes 6. Elsevier, Amsterdam
Fischer TB, Heaney PJ, Jang JH, Ross DE, Brantley SL, Post JE, Tien M (2008) Continuous time-resolved X-ray diffraction of the biocatalysed reduction of Mn oxide. American Mineralogist 93(11-12):1929–1932
Friedmann EI (1982) Endolithic microorganisms in the Antarctic Cold Desert. Science 215:1045–1053
Golubic S, Friedmann I, Schneider J (1981) The lithobiontic ecological niche, with special reference to microorganisms. J Sediment Petrol 51:475–478
Gonzalez I, Laiz L, Hermosin B, Caballero B, Incerti C, Saiz-Jimenez C (1999) Bacteria isolated from rock art paintings: the case of Atlanterra shelter (south Spain). J Microbiol Methods 36:123–127
Guillitte O (1995) Bioreceptivity: a new concept for building ecology studies. Sci Total Environ 167:215–220
Guillitte O, Dreesen R (1995) Laboratory chamber studies and petrographical analysis as bioreceptivity assessment tools of building materials. Sci Total Environ 167:365–374
Kaplan D, Christiaen D, Arad S (1987) Chelating properties of extracellular polysaccharides from Chlorella spp. Appl Environ Microbiol 53:2953–2956
Krumbein WE (1983) Microbial geochemistry. Blackwell Scientific, Oxford
Krumbein WE (1992) Colour changes of building stones and their direct and indirect biological causes. Proceedings of 7th International congress on Deterioration and Conservation of Stone, Lisboa, pp 443–452
Leite Magalhães S, Sequeira Braga MA, Ascaso C (1998) Pátinas biogénicas numa fachada granítica do edifício do Largo do Paço (Braga). Actas do V Congresso Nacional de Geologia, Tomo 84, Fas. 2, Lisboa, pp F-194-F-197
Leite Magalhães S (2000) Biodeterioração de um monumento da cidade de Braga. Estudo microbiológico da pedra granítica. MScE thesis, Universidade do Minho, Braga, Portugal
Lorenzen CJ (1967) Determination of chlorophyll and pheo-pigments: spectrophotometric equations. Limnol Oceanogr 12:343–346
McNamara CJ, Perry TD IV, Bearce KA, Hernandez-Duque G, Mitchell R (2006) Epilithic and endolithic bacterial communities in limestone from a Maya archaeological site. Microb Ecol 51:51–64
Miller A, Dionísio A, Macedo MF (2006) Primary bioreceptivity: a comparative study of different Portuguese lithotypes. Int Biodeterior Biodegrad 57:136–142
Miller AZ, Laiz L, Gonzalez JM, Dionisio A, Macedo MF, Saiz-Jimenez C (2008) Reproducing stone monument photosynthetic-based colonization under laboratory conditions. Sci Total Environ 405:278–285
Miller AZ, Leal N, Laiz L, Rogerio-Candelera MA, Gonzalez JM, Silva RJC, Dionísio A, Macedo MF, Saiz-Jimenez C (2010) Primary bioreceptivity of limestones used in Southern Europe monuments. In: Smith BJ, Gomez-Heras M, Viles HA, Cassar J (eds) Limestone in the built environment: Present day challenges for the preservation of the past. Geological Society of London, London, Special Publications 331:79–92
Miller AZ, Laiz L, Dionísio A, Macedo MF, Saiz-Jimenez C (2009) Growth of phototrophic biofilms from limestone monuments under laboratory conditions. Int Biodeterior Biodegrad 63:860–867
Ortega-Calvo JJ, Hernandez-Marine M, Saiz-Jimenez C (1991) Biodeterioration of building materials by cyanobacteria and algae. Int Biodeterior 28:165–185
Pohl W, Schneider J (2002) Impact of endolithic biofilms on carbonate rock surfaces. Geological Society, London, Special Publication, pp 177–194
Robert M (1993) Rôle du facteur biologique dans la dégradation des roches et des monuments. In: Vincente Hernández MA, Molina Ballesteros E, Rives Arnau V (eds) Actas del workshop: Alteración de granitos y rocas afines, empleados como materiales de contrucción. CSIC, Madrid, pp 103–115
Rogerio-Candelera MA (2008) Una propuesta no invasiva para la documentación integral del arte rupestre. MScE thesis, Universidad de Sevilla, Spain
Rogerio-Candelera MA, Laiz L, Saiz-Jimenez C (2008) Una experiencia de laboratorio para la separación de cubiertas en la documentación de pinturas rupestres y murales afectadas por biodeterioro. In: Saiz-Jimenez C, Rogerio-Candelera MA (eds) Novena Reunión de la Red Temática del CSIC de Patrimonio Histórico y Cultural “Avances recientes en la investigación sobre Patrimonio”. CSIC, Sevilla, pp 71–72
Rogerio-Candelera MA, Laiz L, González JM, Saiz-Jimenez C (2008) Monitorización del crecimiento microbiano en una tumba romana mediante técnicas de teledetección. In: Rovira S, Garcia-Heras M, Gener M, Montero I (eds) Actas del VII Congreso Ibérico de Arqueometría, CSIC, Madrid, pp 593–600
Saiz-Jimenez C, Garcia-Rowe J, Garcia del Cura MA, Ortega-Calvo JJ, Roekens E, Van Grieten R (1990) Endolithic cyanobacteria in Maastricht limestone. Sci Total Environ 94:209–220
Saiz-Jimenez C (1999) Biogeochemistry of weathering processes in monuments. Geomicrobiol J 16:27–37
Salvadori O (2000) Characterization of endolithic communities of stone monuments and natural outcrops. In: Ciferri O, Tiano P, Mastromei G (eds) Of microbes and art—the role of microbial communities in the degradation and protection of cultural heritage. Kluwer Academic, New York, pp 89–101
Tiano P, Accolla P, Tomaselli L (1995) Phototrophic biodeteriogens on lithoid surfaces: an ecological study. Microb Ecol 29:299–309
Tomaselli L, Lamenti G, Bosco M, Tiano P (2000) Biodiversity of photosynthetic micro-organisms dwelling on stone monuments. Int Biodeterior Biodegrad 46:251–258
Vollenweider RA, Talling JF, Westlake DF (1974) A manual on methods for measuring primary production in aquatic environments, 2nd edn. Blackwell, Oxford
Walker JJ, Spear JR, Pace NR (2005) Geobiology of a microbial endolithic community in the Yellowstone geothermal environment. Nature 434:1011–1014
Wierzchos J, Ascaso C (1994) Application of backscattered electron imaging to the study of the lichen-rock interface. Journal of Microsc-Oxford 175:54–59
Wilderer PA, Characklis WG (1989) Structure and function of biofilms. In: Characklis WG, Wildener PA (eds) Structure and function of biofilms. Wiley, Chichester, pp 5–17
Acknowledgements
This work was supported by the Ministério da Ciência, Tecnologia e Ensino Superior, Portugal, with a doctoral grant (SFRH/BD/21481/2005) and partially financed by the CEPGIST FCT subproject DECASTONE. The projects TCP CSD2007-00058 and 2007PT0041 are acknowledged. We also thank F. Pinto (CCMA, CSIC) for technical assistance and CA and JW thanks for support by grant CGL2007-62875/BOS from the Ministry of Science and Innovation of Spain and by PIE-631A from CSIC, Spain.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Miller, A.Z., Rogerio-Candelera, M.A., Laiz, L. et al. Laboratory-Induced Endolithic Growth in Calcarenites: Biodeteriorating Potential Assessment. Microb Ecol 60, 55–68 (2010). https://doi.org/10.1007/s00248-010-9666-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00248-010-9666-x