Advertisement

Microbial Ecology

, Volume 60, Issue 1, pp 226–238 | Cite as

Intact Phospholipid and Quinone Biomarkers to Assess Microbial Diversity and Redox State in Microbial Mats

  • Laura Villanueva
  • Javier del Campo
  • Ricardo Guerrero
  • Roland Geyer
Environmental Microbiology

Abstract

Microbial mats are stratified microbial communities composed by highly inter-related populations and therefore are frequently chosen as model systems to study diversity and ecophysiological strategies. The present study describes an integrated approach to analyze microbial quinones and intact polar lipids (IPLs) in microbial mats within layers as thin as 500 µm by liquid chromatography–tandem mass spectrometry. Quinone profiles revealed important depth-related differences in community composition in two mat systems. The higher abundance of ubiquinones, compared to menaquinones, reflected the clear predominance of microorganisms belonging to aerobic α-, β-, and γ-Proteobacteria in Ebro delta estuarine mats. Hypersaline photosynthetic Camargue mats (France) showed a predominance of menaquinone-9 at the top of the mat, which is consistent with an important contribution of facultative aerobic or anaerobic bacteria in its photic zone. Quinone indices also indicated a higher diversity of non-phototrophs and a more anaerobic character in the hypersaline mats. Besides, the dissimilarity index suggested that the samples were greatly influenced by a depth-related redox state gradient. In the analysis of IPLs, there was a predominance of phosphatidylglycerols and sulfoquinovosyldiacylglycerols, the latter being an abundant biomarker of Cyanobacteria. This combined approach based on quinone and IPL analysis has proven to be a useful method to establish differences in the microbial diversity and redox state of highly structure microbial mat systems at a fine-scale level.

Keywords

Microbial Community Quinone Terminal Restriction Fragment Length Polymorphism Menaquinones Isoprenoid Quinone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank Jordi Urmeneta and Antoni Navarrete for proofreading the manuscript and for helpful discussions. We also thank Mercè Piqueras for critical reading of the manuscript. LV was recipient of a scholarship from the Spanish MECD (AP2001-0953). This research was supported by the grant CGL2005-04990/BOS from the Spanish Ministry of Science and Technology.

Supplementary material

248_2010_9645_MOESM1_ESM.doc (32 kb)
Supplementary Table 1 (DOC 31.5 kb)
248_2010_9645_MOESM2_ESM.ppt (146 kb)
Supplementary Figure 1 (PPT 146 kb)

References

  1. 1.
    Awramik SM (1984) Ancient stromatolites and microbial mats. In: Cohen Y, Castenholz RW, Halvorson HO (eds) Microbial mats: stromatolites. Alan R. Liss, New York, NY, p 1Google Scholar
  2. 2.
    Baker GC, Smith JJ, Cowan DA (2003) Review and re-analysis of domain-specific 16S primers. J Microb Methods 55:541CrossRefGoogle Scholar
  3. 3.
    Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physio 37:911Google Scholar
  4. 4.
    Caumette P, Matheron R, Raymond N, Relexans JC (1994) Microbial mats in the hypersaline ponds of Mediterranean salterns (Salins-de-Giraud, France). FEMS Microbiol Ecol 13:273CrossRefGoogle Scholar
  5. 5.
    Collins MD, Jones D (1981) Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol Rev 45:316PubMedGoogle Scholar
  6. 6.
    Fang J, Barcelona MJ (1998) Structural determination and quantitative analysis of phospholipids using liquid chromatography/electrospray ionization/mass spectrometry. J Microbiol Methods 33:23CrossRefGoogle Scholar
  7. 7.
    Fourçans A, García de Oteyza T, Wieland A, Solé A, Diestra E, van Bleijswijk J, Grimalt JO, Kühl M, Esteve I, Muyzer G, Caumette P, Duran R (2004) Characterization of functional bacterial groups in a hypersaline microbial mat community (Salins-de-Giraud, Camargue, France). FEMS Microb Ecol 51:55CrossRefGoogle Scholar
  8. 8.
    Fourçans A, Ranchou-Peyruse A, Caumette P, Duran R (2008) Molecular analysis of the spatio-temporal distribution of sulfate-reducing bacteria (SRB) in Camargue (France) hypersaline microbial mat. Microb Ecol 56:90CrossRefPubMedGoogle Scholar
  9. 9.
    Fourçans A, Solé A, Diestra E, Ranchou-Peyruse A, Esteve I, Caumette P, Duran R (2006) Vertical migration of phototrophic bacterial populations in a hypersaline microbial mat from Salins-de-Giraud (Camargue, France). FEMS Microbiol Ecol 57:367CrossRefPubMedGoogle Scholar
  10. 10.
    Frentzen M (2004) Phosphatidylglycerol and sulfoquinovosyldiacylglycerol: anionic membrane lipids and phosphate regulation. Curr Opin Plant Biol 7:270CrossRefPubMedGoogle Scholar
  11. 11.
    Fujie K, Hu HY, Tanaka H, Urano K, Saito K, Katayama A (1998) Analysis of respiratory quinone profile in soil for characterization of microbiota. Soil Sci Plant Nut 44:393Google Scholar
  12. 12.
    Gage DA, Huang ZH, Benning C (1992) Comparison of sulfoquinovosyl diacylglycerol from spinach and the purple bacterium Rhodobacter sphaeroides by fast atom bombardment tandem mass spectrometry. Lipids 27:632CrossRefPubMedGoogle Scholar
  13. 13.
    Geyer R, Peacock AD, White DC, Lytle C, Van Berkel GJ (2004) Atmospheric pressure chemical ionization and atmospheric pressure photoionization for simultaneous mass spectrometric analysis of microbial respiratory ubiquinones and menaquinones. J Mass Spectrom 39:922CrossRefPubMedGoogle Scholar
  14. 14.
    Guckert JB, Antworth CP, Nichols PD, White DC (1985) Phospholipid, ester-linked fatty acid profiles as reproducible assays for changes in prokaryotic community structure of estuarine sediments. FEMS Microbiol Ecol 31:147Google Scholar
  15. 15.
    Guerrero R, Urmeneta J, Rampone G (1993) Distribution of types of microbial mats at the Ebro delta, Spain. BioSystems 31:135CrossRefPubMedGoogle Scholar
  16. 16.
    Hedrick DB, White DC (1986) Microbial respiratory quinones in the environment. J Microbiol Methods 5:243CrossRefGoogle Scholar
  17. 17.
    Hiraishi A (1988) Respiratory quinone profiles as tools for identifying different bacterial populations in activated sludge. J Gen Appl Microbiol 34:39CrossRefGoogle Scholar
  18. 18.
    Hiraishi A (1999) Isoprenoid quinones as biomarkers of microbial populations in the environment. J Biosc Bioeng 88:449CrossRefGoogle Scholar
  19. 19.
    Hu H-Y, Lim B-R, Goto N, Fujie K (2001) Analytical precision and repeatability of respiratory quinones for quantitative study of microbial community structure in environmental samples. J Microbiol Methods 47:17CrossRefPubMedGoogle Scholar
  20. 20.
    Iwasaki M, Hiraishi A (1998) A new approach to numerical analyses of microbial quinone profiles in the environment. Microbes Environ 13:67Google Scholar
  21. 21.
    Jahnke LL, Orphan VJ, Embaye T, Turk KA, Kubo MD, Summons RE, Des Marais DJ (2008) Lipid biomarker and phylogenetic analyses to reveal archaeal biodiversity and distribution in hypersaline microbial mat and underlying sediment. Geobiol 6:394CrossRefGoogle Scholar
  22. 22.
    Kenyon CN (1972) Fatty acid composition of unicellular strains of blue-green algae. J Bacteriol 109:827PubMedGoogle Scholar
  23. 23.
    Keusgen M, Curtis JM, Thibault P, Walter JA, Windust A, Ayer SW (1997) Sulfoquinovosyl diacylglycerols from the alga Heterosigma carterae. Lipids 32:1101CrossRefPubMedGoogle Scholar
  24. 24.
    Kim YH, Yoo JS, Kim MS (1997) Structural characterization of sulfoquinovosyl, monogalactosyl and digalactosyl diacylglycerols by FAB-CID-MS/MS. J Mass Spectrom 32:968CrossRefGoogle Scholar
  25. 25.
    Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150CrossRefPubMedGoogle Scholar
  26. 26.
    Lehner U, Brodkorb D, Geyer R, Hause G, Härtig C, Auling G, Fayolle-Guichard F, Piveteau P, Müller RH, Rohwerder T (2007) Aquincola tertiaricarbonis gen. nov., sp. nov., a tertiary butyl moiety-degrading bacterium. Int J Syst Evol Microbiol 57:1295CrossRefGoogle Scholar
  27. 27.
    Li Y-L, Peacock AD, White DC, Geyer R, Zhang CL (2007) Spatial patterns of bacterial signature biomarkers in marine sediments of the Gulf of Mexico. Chem Geol 238:168CrossRefGoogle Scholar
  28. 28.
    Minz D, Fishbain S, Green SJ, Muyzer G, Cohen Y, Rittmann BE, Stahl DA (1999) Unexpected population distribution in a microbial mat community: sulfate-reducing bacteria localized to the highly oxic chemocline in contrast to a eukaryotic preference for anoxia. Appl Environ Microbiol 65:4659PubMedGoogle Scholar
  29. 29.
    Murata N, Nishida I (1987) Lipids of blue-green algae (cyanobacteria). In: Stumpf PK (ed) The biochemistry of plants, vol 4, Lipids: structure and function. Academic, New York, p 315Google Scholar
  30. 30.
    Murphy RC (2002) Mass spectrometry of phospholipids: tables of molecular and product ions. Illuminati Press, Denver, ColoradoGoogle Scholar
  31. 31.
    Navarrete A, Peacock AD, Macnaughton SJ, Urmeneta J, Mas-Castellà J, White DC, Guerrero R (2000) Physiological status and community composition of microbial mats of the Ebro delta, Spain, by Signature Lipid Biomarkers. Microb Ecol 39:92CrossRefPubMedGoogle Scholar
  32. 32.
    Navarrete A, Urmeneta J, Cantu JM, Vegas E, White DC, Guerrero R (2004) Signature lipid biomarkers of microbial mats of the Ebro delta (Spain), Camargue and Étang de Berre (France): an assessment of biomass and activity. Ophelia 58:175Google Scholar
  33. 33.
    Nübel U, Garcia-Pichel F, Kühl M, Muyzer G (1999) Spatial scale and the diversity of benthic cyanobacteria and diatoms in a salina. Hydrobiologia 401:199CrossRefGoogle Scholar
  34. 34.
    Peacock AD, Chang YJ, Istok JD, Krumholz L, Geyer R, Kinsall B, Watson D, Sublette KL, White DC (2004) Utilization of microbial biofilms as monitors of bioremediation. Microb Ecol 47:284CrossRefPubMedGoogle Scholar
  35. 35.
    Pedrós-Alió C (2006) Marine microbial diversity: can it be determined? Trends Microbiol 14:257CrossRefPubMedGoogle Scholar
  36. 36.
    Pierson BK, Parenteau MT (2000) Phototrophs in high iron microbial mats: microstructure of mats in iron-depositing hot springs. FEMS Microbiol Ecol 32:181CrossRefPubMedGoogle Scholar
  37. 37.
    Polglase WJ, Punt WT, Withaar J (1966) Lipoquinones of Escherichia coli. Biochim Biophys Acta 118:425PubMedGoogle Scholar
  38. 38.
    Ringelberg DB, Davis JD, Smith GA, Pfiffner SM, Nichols PD, Nickels JS, Henson JM, Wilson JT, Yates M, Kampbell DH, Reed HW, Stocksdale TT, White DC (1988) Validation of signature phospholipids fatty acid biomarkers for alkaline-utilizing bacteria in soils and subsurface aquifer materials. FEMS Microbiol Ecol 62:39CrossRefGoogle Scholar
  39. 39.
    Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406PubMedGoogle Scholar
  40. 40.
    Solé A, Mas J, Esteve I (2007) A new method based on image analysis for determining cyanobacterial biomass by CLSM in stratified benthic sediments. Ultramicroscopy 107:669CrossRefPubMedGoogle Scholar
  41. 41.
    Sturt HF, Summons RE, Smith K, Elvert M, Hinrichs KU (2004) Intact polar membrane lipids in prokaryotes and sediments deciphered by high-performance liquid chromatography/electrospray ionization multistage mass spectrometry—new biomarkers for biogeochemistry and microbial ecology. Rapid Comm Mass Spectrom 18:617CrossRefGoogle Scholar
  42. 42.
    Teske A, Sigalevich P, Cohen Y, Muyzer G (1996) Molecular identification of bacteria from a coculture by denaturing gradient gel electrophoresis of 16S ribosomal DNA fragments as a tool for isolation in pure cultures. Applied and Environ Microbiol 62:4210Google Scholar
  43. 43.
    Urakawa H, Yoshida T, Nishimura M, Ohwada K (2005) Characterization of depth-related changes and site-specific differences of microbial communities in marine sediments using quinone profiles. Fish Sciences 71:174CrossRefGoogle Scholar
  44. 44.
    Urmeneta J, Navarrete A, Huete J, Guerrero R (2003) Isolation and characterization of cyanobacteria from microbial mats of the Ebro delta, Spain. Curr Microbiol 46:199CrossRefPubMedGoogle Scholar
  45. 45.
    Vestal JR, White DC (1989) Lipid analysis in microbial ecology: quantitative approaches to the study of microbial communities. Bioscience 39:535CrossRefPubMedGoogle Scholar
  46. 46.
    Villanueva L, Navarrete A, Urmeneta J, Geyer R, Guerrero R, White DC (2007) Monitoring diel variations of physiological status and bacterial diversity in an estuarine microbial mat: an integrated biomarker analysis. Microb Ecol 54:523CrossRefPubMedGoogle Scholar
  47. 47.
    Villanueva L, Navarrete A, Urmeneta J, Guerrero R, White DC (2007) Analysis of the spatial and diurnal diversity in an estuarine microbial mat. Archiv Microbiol 188:137CrossRefGoogle Scholar
  48. 48.
    Villanueva L, Navarrete A, Urmeneta J, White DC, Guerrero R (2004) Combined phospholipid biomarker-16S rRNA Gene denaturing gradient gel electrophoresis analysis of bacterial diversity and physiological status in an intertidal microbial mat. Appl Environ Microbiol 70:6920CrossRefPubMedGoogle Scholar
  49. 49.
    Ward DM, Panke S, Klöppel KD, Christ R, Fredrickson H (1994) Complex polar lipids of a hot spring cyanobacterial mat and its cultivated inhabitants. Appl Environ Microbiol 60:3358PubMedGoogle Scholar
  50. 50.
    Ward DM, Shiea J, Bin Zeng Y, Dobson G, Brassell S, Eglinton G (1989) Lipid biomarkers and the composition of microbial mats. In: Cohen Y, Rosenberg E (eds) Microbial mats: physiological ecology of benthic microbial communities. American Society for Microbiology, Washington DC, p 439Google Scholar
  51. 51.
    White DC, Bobbie RJ, Heron JS, King JD, Morrison SJ (1979) Biochemical measurements of microbial mass and activity from environmental samples. In: Costerton JW, Colwell RR (eds) Native aquatic bacteria: enumeration, activity and Ecology, ASTM STP 695. American Society for Testing and Materials, Philadelphia, PA, p 69CrossRefGoogle Scholar
  52. 52.
    White DC, Flemming CA, Leung KT, Macnaughton SJ (1998) In situ microbial ecology for quantitative appraisal, monitoring, and risk assessment of pollution remediation in soils, the subsurface, the rhizosphere and in biofilms. J Microbiol Methods 32:93CrossRefGoogle Scholar
  53. 53.
    Wieland A, Zopfi J, Benthien M, Kühl M (2005) Biogeochemistry of an iron rich hypersaline microbial mat (Camargue, France). Microb Ecol 49:34CrossRefPubMedGoogle Scholar
  54. 54.
    Wilkinson SG (1988) Gram-negative bacteria. In: Ratledge C, Wilkinson SG (eds) Microbial lipids. Academic, London, England, p 299Google Scholar
  55. 55.
    Zeng YB, Ward DM, Brassell S, Eglinton G (1992) Biogeochemistry of hot spring environments. 3. Apolar and polar lipids in the biologically active layers of a cyanobacterial mat. Chem Geol 95:347CrossRefGoogle Scholar
  56. 56.
    Zink KG, Mangelsdorf K (2004) Efficient and rapid method for extraction of intact phospholipids from sediments combined with molecular structure elucidation using LC-ESI-MS-MS analysis. Anal Bioanal Chem 380:798CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Laura Villanueva
    • 1
    • 3
  • Javier del Campo
    • 1
    • 4
  • Ricardo Guerrero
    • 1
  • Roland Geyer
    • 2
    • 5
  1. 1.Department of MicrobiologyUniversity of BarcelonaBarcelonaSpain
  2. 2.UFZ Centre for Environmental ResearchLeipzig-HalleGermany
  3. 3.NIOZ, Royal Netherlands Institute for Sea ResearchDen Burg (Texel)The Netherlands
  4. 4.Institut de Ciencies del MarCSICBarcelonaSpain
  5. 5.Applied Biosystems Europe B.V. (part of Life Technologies)MSS SupportRotkreuzSwitzerland

Personalised recommendations