Microbial Ecology

, Volume 59, Issue 3, pp 487–498 | Cite as

Molecular Ecology Of Macrolide–Lincosamide–Streptogramin B Methylases in Waste Lagoons and Subsurface Waters Associated with Swine Production

  • Satoshi Koike
  • Rustam I. Aminov
  • A. C. Yannarell
  • Holly D. Gans
  • Ivan G. Krapac
  • Joanne C. Chee-Sanford
  • Roderick I. Mackie
Environmental Microbiology


RNA methylase genes are common antibiotic resistance determinants for multiple drugs of the macrolide, lincosamide, and streptogramin B (MLSB) families. We used molecular methods to investigate the diversity, distribution, and abundance of MLSB methylases in waste lagoons and groundwater wells at two swine farms with a history of tylosin (a macrolide antibiotic structurally related to erythromycin) and tetracycline usage. Phylogenetic analysis guided primer design for quantification of MLSB resistance genes found in tylosin-producing Streptomyces (tlr(B), tlr(D)) and commensal/pathogenic bacteria (erm(A), erm(B), erm(C), erm(F), erm(G), erm(Q)). The near absence of tlr genes at these sites suggested a lack of native antibiotic-producing organisms. The gene combination erm(ABCF) was found in all lagoon samples analyzed. These four genes were also detected with high frequency in wells previously found to be contaminated by lagoon leakage. A weak correlation was found between the distribution of erm genes and previously reported patterns of tetracycline resistance determinants, suggesting that dissemination of these genes into the environment is not necessarily linked. Considerations of gene origins in history (i.e., phylogeny) and gene distributions in the landscape provide a useful “molecular ecology” framework for studying environmental spread of antibiotic resistance.


  1. 1.
    Aminov RI, Chee-Sanford JC, Garrigues N, Teferedegne B, Krapac IJ, White BA, Mackie RI (2002) Development, validation, and application of PCR primers for detection of tetracycline efflux genes of gram-negative bacteria. Appl Environ Microbiol 68:1786–1793CrossRefPubMedGoogle Scholar
  2. 2.
    Aminov RI, Garrigues-Jeanjean N, Mackie RI (2001) Molecular ecology of tetracycline resistance: development and validation of primers for detection of tetracycline resistance genes encoding ribosomal protection proteins. Appl Environ Microbiol 67:22–32CrossRefPubMedGoogle Scholar
  3. 3.
    Aminov RI, Mackie RI (2007) Evolution and ecology of antibiotic resistance genes. FEMS Microbiol Lett 271:147–161CrossRefPubMedGoogle Scholar
  4. 4.
    Benson DA, Boguski MS, Lipman DJ, Ostell J, Ouellette BFF, Rapp BA, Wheeler DL (1999) GenBank. Nucleic Acids Res 27:12–17CrossRefPubMedGoogle Scholar
  5. 5.
    Berrang ME, Ladely SR, Meinersmann RJ, Fedorka-Cray PJ (2007) Subtherapeutic tylosin phosphate in broiler feed affects Campylobacter on carcasses during processing. Poultry Sci 86:1229–1233Google Scholar
  6. 6.
    Berryman DI, Lyristis M, Rood JI (1994) Cloning and sequence analysis of ermQ, the predominant macrolide-lincosamide-streptogramin B resistance gene in Clostridium perfringens. Antimicrob Agents Chemother 38:1041–1046PubMedGoogle Scholar
  7. 7.
    Bryskier AJ, Butzler JP, Neu HC, Tulkens PM (1993) Macrolides: chemistry, pharmacology, and clinical uses. Arnette Blackwell, ParisGoogle Scholar
  8. 8.
    Chee-Sanford JC, Aminov RI, Krapac IJ, Garrigues-Jeanjean N, Mackie RI (2001) Occurrence and diversity of tetracycline resistance genes in lagoons and groundwater underlying two swine production facilities. Appl Environ Microbiol 67:1494–1502CrossRefPubMedGoogle Scholar
  9. 9.
    Chee-Sanford JC, Mackie RI, Koike S, Krapac I, Lin Y-F, Yannarell AC, Maxwell S, Aminov RI (2009) Fate and transport of antibiotic residues and antibiotic resistance genes following land application of manure waste. J Environ Qual 38:1086–1108CrossRefPubMedGoogle Scholar
  10. 10.
    Chen J, Fluharty FL, St-Pierre N, Morrison M, Yu Z (2008) Technical note: occurrence in fecal microbiota of genes conferring resistance to both macrolide–lincosamide–streptogramin B and tetracyclines concomitant with feeding of beef cattle with tylosin. J Anim Sci 86:2385–2391CrossRefPubMedGoogle Scholar
  11. 11.
    Chen J, Yu ZT, Michel FC, Wittum T, Morrison M (2007) Development and application of real-time PCR assays for quantification of erm genes conferring resistance to macrolides–lincosamides–streptogramin B in livestock manure and manure management systems. Appl Environ Microbiol 73:4407–4416CrossRefPubMedGoogle Scholar
  12. 12.
    Cooper AJ, Shoemaker NB, Salyers AA (1996) Erythromycin resistance gene from the Bacteroides conjugal transposon Tcr Ermr 7853 is nearly identical to ermG from Bacillus sphaericus. Antimicrob Agents Chemother 40:506–508PubMedGoogle Scholar
  13. 13.
    D'Costa VM, McGrann KM, Hughes DW, Wright GD (2006) Sampling the antibiotic resistome. Science 311:374–377CrossRefPubMedGoogle Scholar
  14. 14.
    De Graef EM, Decostere A, De Leener E, Goossens H, Baele M, Haesebrouck F (2007) Prevalence and mechanism of resistance against macrolides, lincosamides, and streptogramins among Enterococcus faecium isolates from food-producing animals and hospital patients in Belgium. Microb Drug Resist 13:135–141CrossRefPubMedGoogle Scholar
  15. 15.
    De Leener E, Decostere A, De Graef EM, Moyaert H, Haesebrouck F (2005) Presence and mechanism of antimicrobial resistance among enterococci from cats and dogs. Microb Drug Resist 11:395–403CrossRefPubMedGoogle Scholar
  16. 16.
    De Leener E, Martel A, Decostere A, Haesebrouck F (2004) Distribution of the erm(B) gene, tetracycline resistance genes, and TN1545-like transposons in macrolide- and lincosamide-resistant enterococci from pigs and humans. Microb Drug Resist Mechan Epidemiol Dis 10:341–345Google Scholar
  17. 17.
    Heuer H, Krogerrecklenfort E, Wellington EMH, Egan S, van Elsas JD, van Overbeek L, Collard JM, Guillaume G, Karagouni AD, Nikolakopoulou TL, Smalla K (2002) Gentamicin resistance genes in environmental bacteria: prevalence and transfer. FEMS Microbiol Ecol 42:289–302CrossRefPubMedGoogle Scholar
  18. 18.
    Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755CrossRefPubMedGoogle Scholar
  19. 19.
    Jindal A, Kocherginskaya S, Mehboob A, Robert M, Mackie RI, Raskin L, Zilles JL (2006) Antimicrobial use and resistance in swine waste treatment systems. Appl Environ Microbiol 72:7813–7820CrossRefPubMedGoogle Scholar
  20. 20.
    Jost BH, Trinh HT, Songer JG, Billington SJ (2004) A second tylosin resistance determinant, Erm B, in Arcanobacterium pyogenes. Antimicrob Agents Chemother 48:721–727CrossRefPubMedGoogle Scholar
  21. 21.
    Koike S, Krapac IG, Oliver HD, Yannarell AC, Chee-Sanford JC, Aminov RI, Mackie RI (2007) Monitoring and source tracking of tetracycline resistance genes in lagoons and groundwater adjacent to swine production facilities. Appl Environ Microbiol 73:4813–4823CrossRefPubMedGoogle Scholar
  22. 22.
    Krapac I, Dey WS, Smyth CA, Roy WR (1998) Impacts of bacteria, metals, and nutrients on groundwater at two hog confinement facilities. In: Proceedings of Animal feeding operations on groundwater: issues, impact, and solutions: a conference for the future. National Ground Water Association, St. Louis, MO, pp. 29–50Google Scholar
  23. 23.
    Krapac IG, Koike S, Meyer MT, Snow DD, Chou SFJ, Mackie RI, Roy WR, Chee-Sanford JC (2004) Long-term monitoring of the occurrence of antibiotic resistance genes in groundwater near swine confinement facilities. Proceedings of the 4th International conference on pharmaceuticals and endocrine disrupting chemicals in water. National Ground Water Association, Minneapolis, MN, pp. 158–172Google Scholar
  24. 24.
    Ladely SR, Harrison MA, Fedorka-Cray PJ, Berrang ME, Englen MD, Meinersmann RJ (2007) Development of macrolide-resistant Campylobacter in broilers administered subtherapeutic or therapeutic concentrations of tylosin. J Food Prot 70:1945–1951PubMedGoogle Scholar
  25. 25.
    Larson TH, Krapac IG, Dey WS, Suchomski CJ (1997) Electromagnetic terrain conductivity surveys used to screen swine confinement facilities for groundwater contamination. Presented at the Proceedings of the symposium on the application of geophysics to engineering and environmental problems, Reno, NVGoogle Scholar
  26. 26.
    Legendre P, Legendre L (1998) Numerical ecology, second English ed. Elsevier, AmsterdamGoogle Scholar
  27. 27.
    Liu MF, Kirpekar F, van Wezel GP, Douthwaite S (2000) The tylosin resistance gene tlrB of Streptomyces fradiae encodes a methyltransferase that targets G748 in 23S rRNA. Mol Microbiol 37:811–820CrossRefPubMedGoogle Scholar
  28. 28.
    Mackie RI, Koike S, Krapac I, Chee-Sanford J, Maxwell S, Aminov RI (2006) Tetracycline residues and tetracycline resistance genes in groundwater impacted by swine production facilities. Anim Biotechnol 17:157–176CrossRefPubMedGoogle Scholar
  29. 29.
    McEwen SA (2006) Antibiotic use in animal agriculture: what have we learned and where are we going? Anim Biotechnol 17:239–250CrossRefPubMedGoogle Scholar
  30. 30.
    Miller DN (2001) Evaluation of gel filtration resins for the removal of PCR-inhibitory substances from soils and sediments. J Microbiol Methods 44:49–58CrossRefPubMedGoogle Scholar
  31. 31.
    Portillo A, Ruiz-Larrea F, Zarazaga M, Alonso A, Martinez JL, Torres C (2000) Macrolide resistance genes in Enterococcus spp. Antimicrob Agents Chemother 44:967–971CrossRefPubMedGoogle Scholar
  32. 32.
    R Development Core Team (2005) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  33. 33.
    Rasmussen JL, Odelson DA, Macrina FL (1986) Complete nucleotide sequence and transcription of ermF, a macrolide–lincosamide–streptogramin B resistance determinant from Bacteroides fragilis. J Bacteriol 168:523–533PubMedGoogle Scholar
  34. 34.
    Roberts MC (2002) Resistance to tetracycline, macrolide-lincosamide-streptogramin, trimethoprim, and sulfonamide drug classes. Mol Biotechnol 20:261–283CrossRefPubMedGoogle Scholar
  35. 35.
    Roberts MC (2008) Update on macrolide–lincosamide–streptogramin, ketolide, and oxazolidinone resistance genes. FEMS Microbiol Lett 282:147–159CrossRefPubMedGoogle Scholar
  36. 36.
    Roberts MC, Sutcliffe J, Courvalin P, Jensen LB, Rood J, Seppala H (1999) Nomenclature for macrolide and macrolide–lincosamide–streptogramin B resistance determinants. Antimicrob Agents Chemother 43:2823–2830PubMedGoogle Scholar
  37. 37.
    Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574CrossRefPubMedGoogle Scholar
  38. 38.
    Salyers A, Shoemaker NB (2006) Reservoirs of antibiotic resistance genes. Anim Biotechnol 17:137–146CrossRefPubMedGoogle Scholar
  39. 39.
    Singer RS, Ward MP, Maldonado G (2006) Can landscape ecology untangle the complexity of antibiotic resistance? Nat Rev Microbiol 4:943–952CrossRefPubMedGoogle Scholar
  40. 40.
    Sutcliffe J, Grebe T, TaitKamradt A, Wondrack L (1996) Detection of erythromycin-resistant determinants by PCR. Antimicrob Agents Chemother 40:2562–2566PubMedGoogle Scholar
  41. 41.
    Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882CrossRefPubMedGoogle Scholar
  42. 42.
    Tsai YL, Olson BH (1991) Rapid method for direct extraction of DNA from soil and sediments. Appl Environ Microbiol 57:1070–1074PubMedGoogle Scholar
  43. 43.
    Wegener HC (2003) Antibiotics in animal feed and their role in resistance development. Curr Opin Microbiol 6:439–445CrossRefPubMedGoogle Scholar
  44. 44.
    Witte W (2000) Ecological impact of antibiotic use in animals on different complex microflora: environment. Int J Antimicrob Agents 14:321–325CrossRefPubMedGoogle Scholar
  45. 45.
    Yu ZT, Michel FC, Hansen G, Wittum T, Morrison M (2005) Development and application of real-time PCR assays for quantification of genes encoding tetracycline resistance. Appl Environ Microbiol 71:6926–6933CrossRefPubMedGoogle Scholar
  46. 46.
    Zhou JZ, Bruns MA, Tiedje JM (1996) DNA recovery from soils of diverse composition. Appl Environ Microbiol 62:316–322PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Satoshi Koike
    • 1
    • 6
  • Rustam I. Aminov
    • 2
  • A. C. Yannarell
    • 1
    • 5
  • Holly D. Gans
    • 1
  • Ivan G. Krapac
    • 3
  • Joanne C. Chee-Sanford
    • 4
  • Roderick I. Mackie
    • 1
    • 5
  1. 1.Department of Animal SciencesUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Rowett Institute of Nutrition and HealthUniversity of AberdeenAberdeenUK
  3. 3.Illinois State Geological SurveyChampaignUSA
  4. 4.USDA Agricultural Research ServiceUrbanaUSA
  5. 5.Institute for Genomic BiologyUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  6. 6.Research Faculty of AgricultureHokkaido UniversitySapporoJapan

Personalised recommendations