Skip to main content
Log in

Francisella novicida Forms In Vitro Biofilms Mediated by an Orphan Response Regulator

Microbial Ecology Aims and scope Submit manuscript

Abstract

Francisella tularensis is associated with water and waterways and infects many species of animals, insects, and protists. The mechanism Francisella utilizes to persist in the environment and in tick vectors is currently unknown. We have demonstrated for the first time that Francisella novicida, a model organism of F. tularensis, forms a biofilm in vitro. Selected F. novicida transposon mutants were tested for their ability to form biofilm compared to the wildtype F. novicida strain. Mutation of the putative qseB gene led to an impairment in the ability to form biofilm with no impairment in bacterial growth. A qseC mutant had impaired growth but demonstrated a marked impairment in biofilm production. Mutation in capC affected both bacterial growth and biofilm formation, but no biofilm production impairment was seen with capB or pilE mutants. A deletion mutant in the orphan response regulator FTN_1465, which we propose is the putative QseB, formed significantly less biofilm than the wildtype. When FTN_1465 was complemented back into the deletion mutant, biofilm formation was restored. Thus, the orphan response regulator FTN_1465 is an important factor in biofilm production in vitro in F. novicida. These results demonstrate that Francisella species are able to form biofilms in vitro, suggesting that biofilm formation may be important for the lifecycle of this organism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4

Abbreviations

EPM:

Extracellular polysaccharide matrix

TSB-C:

Tryptic soy broth supplemented with 0.1% cysteine HCl

CFU:

Colony forming units

LPS:

Lipopolysaccharide

Pf:

Pseudomonas fluorescens

Fn:

Francisella novicida

REC:

Signal receiver domain

PS:

Polystyrene

PVC:

Polyvinylchloride

References

  1. Ellis J, Oyston PC, Green M, Titball RW (2002) Tularemia. Clin Microbiol Rev 15:631

    Article  PubMed  Google Scholar 

  2. Greub G, Raoult D (2004) Microorganisms resistant to free-living amoebae. Clin Microbiol Rev 17:413

    Article  PubMed  Google Scholar 

  3. Abd H, Johansson T, Golovliov I, Sandstrom G, Forsman M (2003) Survival and growth of Francisella tularensis in Acanthamoeba castellanii. Appl Environ Microbiol 69:600

    Article  CAS  PubMed  Google Scholar 

  4. Eliasson H, Back E (2007) Tularaemia in an emergent area in Sweden: an analysis of 234 cases in five years. Scand J Infect Dis 39:880

    Article  PubMed  Google Scholar 

  5. Petersen JM, Schriefer ME, Gage KL, Montenieri JA, Carter LG, Stanley M, Chu MC (2004) Methods for enhanced culture recovery of Francisella tularensis. Appl Environ Microbiol 70:3733

    Article  CAS  PubMed  Google Scholar 

  6. Larsson P, Oyston PC, Chain P, Chu MC, Duffield M, Fuxelius HH, Garcia E, Halltorp G, Johansson D, Isherwood KE, Karp PD, Larsson E, Liu Y, Michell S, Prior J, Prior R, Malfatti S, Sjostedt A, Svensson K, Thompson N, Vergez L, Wagg JK, Wren BW, Lindler LE, Andersson SG, Forsman M, Titball RW (2005) The complete genome sequence of Francisella tularensis, the causative agent of tularemia. Nat Genet 37:153

    Article  CAS  PubMed  Google Scholar 

  7. McLendon MK, Apicella MA, Allen LA (2006) Francisella tularensis: taxonomy, genetics, and immunopathogenesis of a potential agent of biowarfare. Annu Rev Microbiol 60:167

    Article  CAS  PubMed  Google Scholar 

  8. Jarrett CO, Deak E, Isherwood KE, Oyston PC, Fischer ER, Whitney AR, Kobayashi SD, DeLeo FR, Hinnebusch BJ (2004) Transmission of Yersinia pestis from an infectious biofilm in the flea vector. J Infect Dis 190:783

    Article  PubMed  Google Scholar 

  9. Liu J, Zogaj X, Barker JR, Klose KE (2007) Construction of targeted insertion mutations in Francisella tularensis subsp. novicida. BioTechniques 43:487 492

    Article  CAS  PubMed  Google Scholar 

  10. Hollis DG, Weaver RE, Steigerwalt AG, Wenger JD, Moss CW, Brenner DJ (1989) Francisella philomiragia comb. nov. (formerly Yersinia philomiragia) and Francisella tularensis biogroup novicida (formerly Francisella novicida) associated with human disease. J Clin Microbiol 27:1601

    CAS  PubMed  Google Scholar 

  11. Kieffer TL, Cowley S, Nano FE, Elkins KL (2003) Francisella novicida LPS has greater immunobiological activity in mice than F. tularensis LPS, and contributes to F. novicida murine pathogenesis. Microbes Infect 5:397

    Article  CAS  PubMed  Google Scholar 

  12. Owen CR, Buker EO, Jellison WL, Lackman DB, Bell JF (1964) Comparative Studies of Francisella tularensis and Francisella novicida. J Bacteriol 87:676

    CAS  PubMed  Google Scholar 

  13. Larson CL, Wicht W, Jellison WL (1955) A new organism resembling P. tularensis isolated from water. Public Health Rep 70:253

    CAS  PubMed  Google Scholar 

  14. Goethert HK, Telford SR 3rd (2009) Nonrandom distribution of vector ticks (Dermacentor variabilis) infected by Francisella tularensis. PLoS Pathogens 5:e1000319

    Article  PubMed  Google Scholar 

  15. Weiter M, Bergfeld T, Rice SA, Matz C, Kjelleberg S (2005) Grazing resistance of Pseudomonas aeruginosa bioflims depends on type of protective mechanism, development stage and protozoan feeding mode. Environ Microbiol 10:1593

    Article  Google Scholar 

  16. Shirtliff ME, Mader JT, Camper AK (2002) Molecular interactions in biofilms. Chem Biol 9:859

    Article  CAS  PubMed  Google Scholar 

  17. Parsek MR, Singh PK (2003) Bacterial biofilms: an emerging link to disease pathogenesis. Annu Rev Microbiol 57:677

    Article  CAS  PubMed  Google Scholar 

  18. Sandstrom G, Logren S, Tarnvik A (1988) A capsule-defiecient mutant of Francisella tularensis LVS exhibits enhanced sensitivity to killing by serum but diminished sensitivity to killing by polymorphonuclear leukocytes. Infect Immun 56:1194

    CAS  PubMed  Google Scholar 

  19. Weiss DS, Brotcke A, Henry T, Margolis JJ, Chan K, Monack DM (2007) In vivo negative selection screen identifies genes required for Francisella virulence. Proc Natl Acad Sci U S A 104:6037

    Article  CAS  PubMed  Google Scholar 

  20. Su J, Yang J, Zhao D, Kawula TH, Banas JA, Zhang JR (2007) Genome-wide identification of Francisella tularensis virulence determinants. Infect Immun 75:3089

    Article  CAS  PubMed  Google Scholar 

  21. Forsberg A, Guina T (2007) Type II secretion and type IV pili of Francisella. Ann N Y Acad Sci 1105:187

    Article  CAS  PubMed  Google Scholar 

  22. Costerton JW (1999) Introduction to biofilm. Int J Antimicrob Agents 11:217 discussion 237–219

    Article  CAS  PubMed  Google Scholar 

  23. Gonzalez Barrios AF, Zuo R, Hashimoto Y, Yang L, Bentley WE, Wood TK (2006) Autoinducer 2 controls biofilm formation in Escherichia coli through a novel motility quorum-sensing regulator (MqsR, B3022). J Bacteriol 188:305

    Article  PubMed  Google Scholar 

  24. Niba ET, Naka Y, Nagase M, Mori H, Kitakawa M (2007) A genome-wide approach to identify the genes involved in biofilm formation in E. coli. DNA Res 14:237

    Article  CAS  PubMed  Google Scholar 

  25. Sauer K, Camper AK, Ehrlich GD, Costerton JW, Davies DG (2002) Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 184:1140

    Article  CAS  PubMed  Google Scholar 

  26. Schaber JA, Hammond A, Carty NL, Williams SC, Colmer-Hamood JA, Burrowes BH, Dhevan V, Griswold JA, Hamood AN (2007) Diversity of biofilms produced by quorum-sensing-deficient clinical isolates of Pseudomonas aeruginosa. J Med Microbiol 56:738

    Article  CAS  PubMed  Google Scholar 

  27. Clarke MB, Sperandio V (2005) Transcriptional autoregulation by quorum sensing Escherichia coli regulators B and C (QseBC) in enterohaemorrhagic E. coli (EHEC). Mol Microbiol 58:441

    Article  CAS  PubMed  Google Scholar 

  28. Teather RM, Wood PJ (1982) Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Environ Microbiol 43:777

    CAS  PubMed  Google Scholar 

  29. Ceri H, Olson ME, Stremick C, Read RR, Morck D, Buret A (1999) The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol 37:1771

    CAS  PubMed  Google Scholar 

  30. Gallagher LA, Ramage E, Jacobs MA, Kaul R, Brittnacher M, Manoil C (2007) A comprehensive transposon mutant library of Francisella novicida, a bioweapon surrogate. Proc Natl Acad Sci U S A 104:1009

    Article  CAS  PubMed  Google Scholar 

  31. Mohapatra NP, Soni S, Bell BL, Warren R, Ernst RK, Muszynski A, Carlson RW, Gunn JS (2007) Identification of an orphan response regulator required for the virulence of Francisella spp. and transcription of pathogenicity island genes. Infect Immun 75:3305

    Article  CAS  PubMed  Google Scholar 

  32. Stepanovic S, Vukovic D, Dakic I, Savic B, Svabic-Vlahovic M (2000) A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J Microbiol Methods 40:175

    Article  CAS  PubMed  Google Scholar 

  33. Venketaraman V, Lin AK, Le A, Kachlany SC, Connell ND, Kaplan JB (2008) Both leukotoxin and poly-N-acetylglucosamine surface polysaccharide protect Aggregatibacter actinomycetemcomitans cells from macrophage killing. Microb Pathog 45:173

    Article  CAS  PubMed  Google Scholar 

  34. O’Toole GA, Kolter R (1998) Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol 28:449

    Article  PubMed  Google Scholar 

  35. O’Toole GA, Kolter R (1998) Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30:295

    Article  PubMed  Google Scholar 

  36. Xavier JB, Picioreanu C, van Loosdrecht MC (2004) Assessment of three-dimensional biofilm models through direct comparison with confocal microscopy imaging. Water Sci Technol 49:177

    CAS  PubMed  Google Scholar 

  37. Mueller LN, de Brouwer JF, Almeida JS, Stal LJ, Xavier JB (2006) Analysis of a marine phototrophic biofilm by confocal laser scanning microscopy using the new image quantification software PHLIP. BMC Ecol 6:1

    Article  PubMed  Google Scholar 

  38. Sperandio V, Torres AG, Kaper JB (2002) Quorum sensing Escherichia coli regulators B and C (QseBC): a novel two-component regulatory system involved in the regulation of flagella and motility by quorum sensing in E. coli. Mol Microbiol 43:809

    Article  CAS  PubMed  Google Scholar 

  39. Galperin MY (2006) Structural classification of bacterial response regulators: diversity of output domains and domain combinations. J Bacteriol 188:4169

    Article  CAS  PubMed  Google Scholar 

  40. Forslund AL, Kuoppa K, Svensson K, Salomonsson E, Johansson A, Bystrom M, Oyston PC, Michell SL, Titball RW, Noppa L, Frithz-Lindsten E, Forsman M, Forsberg A (2006) Direct repeat-mediated deletion of a type IV pilin gene results in major virulence attenuation of Francisella tularensis. Mol Microbiol 59:1818

    Article  CAS  PubMed  Google Scholar 

  41. Hughes DT, Sperandio V (2008) Inter-kingdom signalling: communication between bacteria and their hosts. Nat Rev Microbiol 6:111

    Article  CAS  PubMed  Google Scholar 

  42. Clarke MB, Sperandio V (2005) Transcriptional regulation of flhDC by QseBC and sigma (FliA) in enterohaemorrhagic Escherichia coli. Mol Microbiol 57:1734

    Article  CAS  PubMed  Google Scholar 

  43. Izano EA, Sadovskaya I, Vinogradov E, Mulks MH, Velliyagounder K, Ragunath C, Kher WB, Ramasubbu N, Jabbouri S, Perry MB, Kaplan JB (2007) Poly-N-acetylglucosamine mediates biofilm formation and antibiotic resistance in Actinobacillus pleuropneumoniae. Microb Pathog 43:1

    Article  CAS  PubMed  Google Scholar 

  44. Izano EA, Sadovskaya I, Wang H, Vinogradov E, Ragunath C, Ramasubbu N, Jabbouri S, Perry MB, Kaplan JB (2008) Poly-N-acetylglucosamine mediates biofilm formation and detergent resistance in Aggregatibacter actinomycetemcomitans. Microb Pathog 44:52

    Article  CAS  PubMed  Google Scholar 

  45. Kaplan JB, Velliyagounder K, Ragunath C, Rohde H, Mack D, Knobloch JK, Ramasubbu N (2004) Genes involved in the synthesis and degradation of matrix polysaccharide in Actinobacillus actinomycetemcomitans and Actinobacillus pleuropneumoniae biofilms. J Bacteriol 186:8213

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

MDC was supported by a Graduate Research Assistantship from the National Center for Biodefense and Infectious Diseases, George Mason University, and the National Science Foundation GK-12 Fellowship. ABV was supported by a High-Potential Graduate Research Assistantship from the Office of the Provost, George Mason University, and was partially supported through the Joint Science and Technology Office for Chemical and Biological Defense/Defense Threat Reduction Agency and contracted through the US Army Medical Research and Material Command under Contract No. W81XWH-06-C-0306. This research was also supported by a Small Research Grant to MVH from the Virginia Academy of Science. The confocal microscope was purchased with support from DOE Grant DE-F C52-04NA25455 and the Commonwealth of Virginia Educational Trust Fund. P. fluorescens (Pf) was a kind gift from J. Mose and Dr. P. Royt (GMU). ΔFTN_1465 and the ΔFTN_1465 complement were a kind gift from Dr. J. S. Gunn (The Ohio State University Medical Center). We would like to thank Dr. D. Cox (GMU) for technical assistance with the confocal microscope.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monique L. van Hoek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Durham-Colleran, M.W., Verhoeven, A.B. & van Hoek, M.L. Francisella novicida Forms In Vitro Biofilms Mediated by an Orphan Response Regulator. Microb Ecol 59, 457–465 (2010). https://doi.org/10.1007/s00248-009-9586-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-009-9586-9

Keywords

Navigation