Skip to main content

Advertisement

Log in

What Genomic Sequence Information Has Revealed About Vibrio Ecology in the Ocean—A Review

  • Minireviews
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

To date, the genomes of eight Vibrio strains representing six species and three human pathogens have been fully sequenced and reported. This review compares genomic information revealed from these sequencing efforts and what we can infer about Vibrio biology and ecology from this and related genomic information. The focus of the review is on those attributes that allow the Vibrios to survive and even proliferate in their ocean habitats, which include seawater, plankton, invertebrates, fish, marine mammals, plants, man-made structures (surfaces), and particulate matter. Areas covered include general information about the eight genomes, each of which is distributed over two chromosomes; a discussion of expected and unusual genes found; attachment sites and mechanisms; utilization of particulate and dissolved organic matter; and conclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Adin DM, Visick KL, Stabb EV (2008) Identification of a cellobiose utilization gene cluster with cryptic β-galactosidase activity in Vibrio fischeri. Appl Environ Microbiol 74:4059–4069

    Article  PubMed  CAS  Google Scholar 

  2. Alcaide E, Amaro C, Todoli R, Oltra R (1999) Isolation and characterization of Vibrio parahaemolyticus causing infection in Iberian toothcarp Aphanius iberus. Dis Aquat Organ 35:77–80

    Article  PubMed  CAS  Google Scholar 

  3. Ammerman JW, Fuhrman JA, Hagström A, Azam F (1984) Bacterioplankton growth in seawater: I. Growth kinetics and cellular characteristics in seawater cultures. Mar Ecol Prog Ser 18:31–39

    Article  Google Scholar 

  4. Aridgides LJ, Doblin MA, Berke T, Dobbs FC, Matson DO, Drake LA (2004) Multiplex PCR allows simultaneous detection of pathogens in ships' ballast water. Mar Pollut Bull 48:1096–1101

    Article  PubMed  CAS  Google Scholar 

  5. Baffone W, Pianetti A, Bruscolini F, Barbieri E, Citterio B (2000) Occurrence and expression of virulence-related properties of Vibrio species isolated from widely consumed seafood products. Int J Food Microbiol 54:9–18

    Article  PubMed  CAS  Google Scholar 

  6. Barker WH Jr, Mackowiak PA, Fishbein M, Morris GK, D'Alfonso JA, Hauser GH, Felsenfeld O (1974) Vibrio parahaemolyticus gastroenteritis outbreak in Covington, Louisiana, in August 1972. Am J Epidemiol 100:316–323

    PubMed  Google Scholar 

  7. Bean NH, Maloney EK, Potter ME, Korazemo P, Ray B, Taylor JP, Seigler S, Snowden J (1998) Crayfish: a newly recognized vehicle for vibrio infections. Epidemiol Infect 121:269–273

    Article  PubMed  CAS  Google Scholar 

  8. Benner R (2002) Chemical composition and reactivity. In: Hansell DA, Carlson CA (eds) Biogeochemistry of marine dissolved organic matter. Academic, New York, pp 59–90

    Chapter  Google Scholar 

  9. Berardesco G, Dyhrman S, Gallagher E, Shiaris MP (1998) Spatial and temporal variation of phenanthrene-degrading bacteria in intertidal sediments. Appl Environ Microbiol 64:2560–2565

    PubMed  CAS  Google Scholar 

  10. Bina JE, Provenzano D, Wang C, Bina XR, Mekalanos JJ (2006) Characterization of the Vibrio cholerae vexAB and vexCD efflux systems. Arch Microbiol 186:171–181

    Article  PubMed  CAS  Google Scholar 

  11. Bomchil N, Watnick P, Kolter R (2003) Identification and characterization of a Vibrio cholerae gene, mbaA, involved in maintenance of biofilm architecture. J Bacteriol 185:1384–1390

    Article  PubMed  CAS  Google Scholar 

  12. Bult CJ, White O, Olsen GJ, Zhou L, Fleischmann RD, Sutton GG, Blake JA, FitzGerald LM, Clayton RA, Gocayne JD et al (1996) Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 273:1058–1073

    Article  PubMed  CAS  Google Scholar 

  13. CAC (2002) Joint FAO/WHO Food Standards Program, Codex Committee on Food Hygiene, Discussion paper on risk management strategies for Vibrio spp. in seafood. Report nr CX/FH 03/5-Add.3

  14. Cai T, Jiang L, Yang C, Huang K (2006) Application of real-time PCR for quantitative detection of Vibrio parahaemolyticus from seafood in eastern China. FEMS Immunol Med Microbiol 46:180–186

    Article  PubMed  CAS  Google Scholar 

  15. Chen C-Y, Wu K-M, Chang Y-C, Chang C-H, Tsai H-C, Liao T-L, Liu Y-M, Chen H-J, Shen AB-T, Li J-C et al (2003) Comparative genome analysis of Vibrio vulnificus, a marine pathogen. Cold Spring Harbor Laboratory Press, Woodbury, pp 2577–2587

    Google Scholar 

  16. Chiu H-J, Syu W Jr (2005) Functional analysis of EspB from enterohaemorrhagic Escherichia coli. Microbiology 151:3277–3286

    Article  PubMed  CAS  Google Scholar 

  17. Colwell RR, Huq A, Islam MS, Aziz KM, Yunus M, Khan NH, Mahmud A, Sack RB, Nair GB, Chakraborty J et al (2003) Reduction of cholera in Bangladeshi villages by simple filtration. Proc Natl Acad Sci USA 100:1051–1055

    Article  PubMed  CAS  Google Scholar 

  18. Colwell RR, Kaper J, Joseph SW (1977) Vibrio cholerae, Vibrio parahaemolyticus, and other Vibrios: occurrence and distribution in Chesapeake Bay. Science 198:394–396

    PubMed  CAS  Google Scholar 

  19. Cook DW, Oleary P, Hunsucker JC, Sloan EM, Bowers JC, Blodgett RJ, Depaola A (2002) Vibrio vulnificus and Vibrio parahaemolyticus in U.S. retail shell oysters: a national survey from June 1998 to July 1999. J Food Prot 65:79–87

    PubMed  Google Scholar 

  20. Cornelis GR, Boland A, Boyd AP, Geuijen C, Iriarte M, Neyt C, Sory MP, Stainier I (1998) The virulence plasmid of Yersinia, an antihost genome. Microbiol Mol Biol Rev 62:1315–1352

    PubMed  CAS  Google Scholar 

  21. Costerton JW, Lewandowski Z, DeBeer D, Caldwell D, Korber D, James G (1994) Biofilms, the customized microniche. J Bacteriol 176:2137–2142

    PubMed  CAS  Google Scholar 

  22. Dadisman TA Jr, Nelson R, Molenda JR, Garber HJ (1972) Vibrio parahaemolyticus gastroenteritis in Maryland. I. Clinical and epidemiologic aspects. Am J Epidemiol 96:414–426

    PubMed  Google Scholar 

  23. Dryselius R, Izutsu K, Honda T, Iida T (2008) Differential replication dynamics for large and small Vibrio chromosomes affect gene dosage, expression and location. BMC Genomics 9:559

    Article  PubMed  CAS  Google Scholar 

  24. Duan D, Xu L, Fei X, Xu H (1995) Short communication: marine organisms attached to seaweed surfaces in Jiaozhou Bay, China. World J Microbiol Biotechnol 11:351–352

    Article  Google Scholar 

  25. Dumontet S, Krovacek K, Baloda SB, Grottoli R, Pasquale V, Vanucci S (1996) Ecological relationship between Aeromonas and Vibrio spp. and planktonic copepods in the coastal marine environment in southern Italy. Comp Immunol Microbiol Infect Dis 19:245–254

    Article  PubMed  CAS  Google Scholar 

  26. Farmer JJ, Janda M, Brenner FW, Cameron DN, Birkhead KM (2005) Genus 1. Vibrio. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey's manual of systematic bacteriology, vol. 2, The Proteobacteria, Part B. The Gammaproteobacteria. Springer, New York, pp 494–546

    Google Scholar 

  27. Freeman JA, Bassler BL (1999) Sequence and function of LuxU: a two-component phosphorelay protein that regulates quorum sensing in Vibrio harveyi. J Bacteriol 181:899–906

    PubMed  CAS  Google Scholar 

  28. Frias-Lopez J, Shi Y, Tyson GW, Coleman ML, Schuster SC, Chisholm SW, DeLong EF (2008) Microbial community gene expression in ocean surface waters. Proc Natl Acad Sci USA 105:3805–3810

    Article  PubMed  CAS  Google Scholar 

  29. Fu W, Han B, Duan D, Liu W, Wang C (2008) Purification and characterization of agarases from a marine bacterium Vibrio sp. F-6. J Ind Microbiol Biotech 35:915–922

    Article  CAS  Google Scholar 

  30. Galan JE, Collmer A (1999) Type III secretion machines: bacterial devices for protein delivery into host cells. Science 284:1322–1328

    Article  PubMed  CAS  Google Scholar 

  31. Ghosh A, Saha DR, Hoque KM, Asakuna M, Yamasaki S, Koley H, Das SS, Chakrabarti MK, Pal A (2006) Enterotoxigenicity of mature 45-kilodalton and processed 35-kilodalton forms of hemagglutinin protease purified from a cholera toxin gene-negative Vibrio cholerae non-O1, non-O139 strain. Infect Immun 74:2937–2946

    Article  PubMed  CAS  Google Scholar 

  32. Gopal S, Otta SK, Kumar S, Karunasagar I, Nishibuchi M, Karunasagar I (2005) The occurrence of Vibrio species in tropical shrimp culture environments; implications for food safety. Int J Food Microbiol 102:151–159

    Article  PubMed  Google Scholar 

  33. Grimes DJ (1991) Ecology of estuarine bacteria capable of causing human disease: a review. Estuaries 14:345–360

    Article  Google Scholar 

  34. Grimes DJ, Jacobs D, Swartz DG, Brayton PR, Colwell RR (1993) Numerical taxonomy of gram-negative, oxidase-positive rods from carcharhinid sharks. Int J Syst Bacteriol 43:88–98

    Article  Google Scholar 

  35. Grimes DJ, Russell A, Johnson CN (2007) Distribution of culturable Vibrio parahaemolyticus and V. vulnificus in coastal habitats of the Mississippi Sound: bacterial reservoirs in sedimentary habitats. 107th General Meeting of the American Society for Microbiology. Toronto, Ontario, Canada

  36. Grimes DJ, Singleton FL, Colwell RR (1984) Allogenic succession of marine bacterial communities in response to pharmaceutical waste. J Appl Bacteriol 57:247–261

    PubMed  CAS  Google Scholar 

  37. Hacker J, Kaper JB (2000) Pathogenicity islands and the evolution of microbes. Ann Rev Microbiol 54:641–679

    Article  CAS  Google Scholar 

  38. Hagström A, Ammerman JW, Henrichs S, Azam F (1984) Bacterioplankton growth in seawater II. Organic matter utilization during steady-state growth in seawater cultures. Mar Ecol Prog Ser 18:41–48

    Article  Google Scholar 

  39. Hallam SJ, Konstantinidis KT, Putnam N, Schleper C, Watanabe Y, Sugahara J, Preston C, de la Torre J, Richardson PM, DeLong EF (2006) Genomic analysis of the uncultivated marine crenarchaeote Cenarchaeum symbiosum. Proc Natl Acad Sci U S A 103:18296–18301

    Article  PubMed  CAS  Google Scholar 

  40. Hayat Mahmud Z, Kassu A, Mohammad A, Yamato M, Bhuiyan NA, Balakrish Nair G, Ota F (2006) Isolation and molecular characterization of toxigenic Vibrio parahaemolyticus from the Kii Channel, Japan. Microbiol Res 161:25–37

    Article  PubMed  CAS  Google Scholar 

  41. Heidelberg JF, Eisen JA, Nelson WC, Clayton RA, Gwinn ML, Dodson RJ, Haft DH, Hickey EK, Peterson JD, Umayam L et al (2000) DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature 406:477–483

    Article  PubMed  CAS  Google Scholar 

  42. Hoffmann PR, Berry MJ (2008) The influence of selenium on immune responses. Molec Nutrit Food Res 52:1273–1280

    Article  CAS  Google Scholar 

  43. Hood MA, Winter PA (1997) Attachment of Vibrio cholerae under various environmental conditions and to selected substrates. FEMS Microbiol Ecol 22:215–223

    Article  CAS  Google Scholar 

  44. Hsieh JL, Fries JS, Noble RT (2007) Vibrio and phytoplankton dynamics during the summer of 2004 in a eutrophying estuary. Ecol Appl 17:S102–S109

    Article  Google Scholar 

  45. Hunt DE, Gevers D, Vahora NM, Polz MF (2008) Conservation of the chitin utilization pathway in the Vibrionaceae. Appl Environ Microbiol 74:44–51

    Article  PubMed  CAS  Google Scholar 

  46. Huq A, Colwell RR (1995) Vibrios in the marine and estuarine environments. J Mar Biotechnol 3:60–63

    Google Scholar 

  47. Huq A, Small EB, West PA, Huq MI, Rahman R, Colwell RR (1983) Ecological relationships between Vibrio cholerae and planktonic crustacean copepods. Appl Environ Microbiol 45:275–283

    PubMed  CAS  Google Scholar 

  48. Huq A, West PA, Small EB, Huq MI, Colwell RR (1984) Influence of water temperature, salinity, and pH on survival and growth of toxigenic Vibrio cholerae serovar 01 associated with live copepods in laboratory microcosms. Appl Environ Microbiol 48:420–424

    PubMed  CAS  Google Scholar 

  49. Islam MS, Drasar BS, Bradley DJ (1990) Long-term persistence of toxigenic Vibrio cholerae 01 in the mucilaginous sheath of a blue-green alga, Anabaena variabilis. J Trop Med Hyg 93:133–139

    PubMed  CAS  Google Scholar 

  50. Johansson L, Gafvelin G, Arnér ESJ (2005) Selenocysteine in proteins—properties and biotechnological use. Biochimica et Biophysica Acta (BBA) - General Subjects 1726:1–13

    Article  CAS  Google Scholar 

  51. Jones MK, Warner E, Oliver JD (2008) Survival of and in situ gene expression by Vibrio vulnificus at varying salinities in estuarine environments. Appl Environ Microbiol 74:182–187

    Article  PubMed  CAS  Google Scholar 

  52. Karatan E, Duncan TR, Watnick PI (2005) NspS, a predicted polyamine sensor, mediates activation of Vibrio cholerae biofilm formation by norspermidine. J Bacteriol 187:7434–7443

    Article  PubMed  CAS  Google Scholar 

  53. Kim YR, Lee SE, Kim CM, Kim SY, Shin EK, Shin DH, Chung SS, Choy HE, Progulske-Fox A, Hillman JD et al (2003) Characterization and pathogenic significance of Vibrio vulnificus antigens preferentially expressed in septicemic patients. Infect Immun 71:5461–5471

    Article  PubMed  CAS  Google Scholar 

  54. Kirchman DL, White J (1999) Hydrolysis and mineralization of chitin in the Delaware Estuary. Aquat Microb Ecol 18:187–196

    Article  Google Scholar 

  55. Kirschner AKT, Schlesinger J, Farnleitner AH, Hornek R, Suss B, Golda B, Herzig A, Reitner B (2008) Rapid growth of planktonic Vibrio cholerae Non-O1/Non-O139 strains in a large alkaline lake in Austria: dependence on temperature and dissolved organic carbon quality. Appl Environ Microbiol 74:2004–2015

    Article  PubMed  CAS  Google Scholar 

  56. Kumazawa NH, Kato E (1985) Survival of Kanagawa-positive strains of Vibrio parahaemolyticus in a brackish-water area. J Hyg (Lond) 95:299–307

    CAS  Google Scholar 

  57. Kumazawa NH, Kawasaki Y (1997) Selective survival of a thermostable direct hemolysin-producing Vibrio parahaemolyticus in the alimentary tract of a juvenile estuarine gastropod (Clithon retropictus). J Vet Med Sci 59:277–279

    Article  PubMed  CAS  Google Scholar 

  58. Le Roux F, Zouine M, Chakroun N, Binesse J, Saulnier D, Bouchier C, Zidane N, Ma L, Rusniok C, Lajus A et al (2009) Genome sequence of Vibrio splendidus: an abundant planktonic marine species with a large genotypic diversity. Environ Microbiol. doi:10.1111/j.1462-2920.2009.01918.x

    PubMed  Google Scholar 

  59. LeCleir GR, Buchan A, Hollibaugh JT (2004) Chitinase gene sequences retrieved from diverse aquatic habitats reveal environment-specific distributions. Appl Environ Microbiol 70:6977–6983

    Article  PubMed  CAS  Google Scholar 

  60. Makino K, Oshima K, Kurokawa K, Yokoyama K, Uda T, Tagomori K, Iijima Y, Najima M, Nakano M, Yamashita A et al (2003) Genome sequence of Vibrio parahaemolyticus: a pathogenic mechanism distinct from that of V. cholerae. Lancet 361:743–749

    Article  PubMed  CAS  Google Scholar 

  61. Mimura H, Abe A, Katakura R, Kawasaki H, Yoshida K, Ishida H (2006) Lethality of shock pressures to a marine Vibrio sp. isolated from a ship's ballast water. Biocontrol Sci 11:159–166

    PubMed  Google Scholar 

  62. Mimura H, Katakura R, Ishida H (2005) Changes of microbial populations in a ship's ballast water and sediments on a voyage from Japan to Qatar. Mar Pollut Bull 50:751–757

    Article  PubMed  CAS  Google Scholar 

  63. Montgomery MT, Kirchman DL (1993) Role of chitin-binding proteins in the specific attachment of the marine bacterium Vibrio harveyi to Chitin. Appl Environ Microbiol 59:373–379

    PubMed  CAS  Google Scholar 

  64. Moorthy S, Watnick PI (2004) Genetic evidence that the Vibrio cholerae monolayer is a distinct stage in biofilm development. Mol Microbiol 52:573–587

    Article  PubMed  CAS  Google Scholar 

  65. Mourino-Perez RR, Worden AZ, Azam F (2003) Growth of Vibrio cholerae O1 in red tide waters off California. Appl Environ Microbiol 69:6923–6931

    Article  PubMed  CAS  Google Scholar 

  66. Myklestad S (2000) Dissolved organic carbon from phytoplankton. Mar Chem 5D:111–148

    Article  CAS  Google Scholar 

  67. Okada K, Iida T, Kita-Tsukamoto K, Honda T (2005) Vibrios commonly possess two chromosomes. J Bacteriol 187:752–757

    Article  PubMed  CAS  Google Scholar 

  68. Okuda J, Ishibashi M, Hayakawa E, Nishino T, Takeda Y, Mukhopadhyay AK, Garg S, Bhattacharya SK, Nair GB, Nishibuchi M (1997) Emergence of a unique O3:K6 clone of Vibrio parahaemolyticus in Calcutta, India, and isolation of strains from the same clonal group from Southeast Asian travelers arriving in Japan. J Clin Microbiol 35:3150–3155

    PubMed  CAS  Google Scholar 

  69. Paranjpye RN, Lara JC, Pepe JC, Pepe CM, Strom MS (1998) The type IV leader peptidase/N-methyltransferase of Vibrio vulnificus controls factors required for adherence to HEp-2 cells and virulence in iron-overloaded mice. Infect Immun 66:5659–5668

    PubMed  CAS  Google Scholar 

  70. Paranjpye RN, Strom MS (2005) A Vibrio vulnificus type IV pilin contributes to biofilm formation, adherence to epithelial cells, and virulence. Infect Immun 73:1411–1422

    Article  PubMed  CAS  Google Scholar 

  71. Poretsky RS, Bano N, Buchan A, LeCleir G, Kleikemper J, Pickering M, Pate WM, Moran MA, Hollibaugh JT (2005) Analysis of microbial gene transcripts in environmental samples. Appl Environ Microbiol 71:4121–4126

    Article  PubMed  CAS  Google Scholar 

  72. Presley SM, Rainwater TR, Austin GP, Platt SG, Zak JC, Cobb GP, Marsland EJ, Tian K, Zhang B, Anderson TA and others (2006) Assessment of pathogens and toxicants in New Orleans, LA following Hurricane Katrina. Environ Sci Technol 40:468–474

    Article  CAS  Google Scholar 

  73. Pruzzo C, Tarsi R, Lleo MM, Signoretto C, Zampini M, Pane L, Colwell RR, Canepari P (2003) Persistence of adhesive properties in Vibrio cholerae after long-term exposure to sea water. Environ Microbiol 5:850–858

    Article  PubMed  CAS  Google Scholar 

  74. Qadri F, Alam MS, Nishibuchi M, Rahman T, Alam NH, Chisti J, Kondo S, Sugiyama J, Bhuiyan NA, Mathan MM et al (2003) Adaptive and inflammatory immune responses in patients infected with strains of Vibrio parahaemolyticus. J Infect Dis 187:1085–1096

    Article  PubMed  Google Scholar 

  75. Qadri F, Bhuiyan TR, Dutta KK, Raqib R, Alam MS, Alam NH, Svennerholm AM, Mathan MM (2004) Acute dehydrating disease caused by Vibrio cholerae serogroups O1 and O139 induce increases in innate cells and inflammatory mediators at the mucosal surface of the gut. Gut 53:62–69

    Article  PubMed  CAS  Google Scholar 

  76. Quinones M, Davis BM, Waldor MK (2006) Activation of the Vibrio cholerae SOS response is not required for intestinal cholera toxin production or colonization. Infect Immun 74:927–930

    Article  PubMed  CAS  Google Scholar 

  77. Rashid MH, Rajanna C, Ali A, Karaolis DK (2003) Identification of genes involved in the switch between the smooth and rugose phenotypes of Vibrio cholerae. FEMS Microbiol Lett 227:113–119

    Article  PubMed  CAS  Google Scholar 

  78. Reguera G, Kolter R (2005) Virulence and the environment: a novel role for Vibrio cholerae toxin-coregulated pili in biofilm formation on chitin. J Bacteriol 187:3551–3555

    Article  PubMed  CAS  Google Scholar 

  79. Riemann L, Azam F (2002) Widespread N-acetyl-d-glucosamine uptake among pelagic marine bacteria and its ecological implications. Appl Environ Microbiol 68:5554–5562

    Article  PubMed  CAS  Google Scholar 

  80. Ruby EG, Urbanowski M, Campbell J, Dunn A, Faini M, Gunsalus R, Lostroh P, Lupp C, McCann J, Millikan D et al (2005) Complete genome sequence of Vibrio fischeri: a symbiotic bacterium with pathogenic congeners. Proc Natl Acad Sci U S A 102:3004–3009

    Article  PubMed  CAS  Google Scholar 

  81. Sasmal D, Guhathakurta B, Bhattacharya SK, Pal CR, Datta A (2002) N-acetyl-d-glucosamine specific hemagglutinin receptor of Vibrio cholerae O1 in chicken erythrocyte membranes. FEMS Immunol Med Microbiol 32:187–189

    PubMed  CAS  Google Scholar 

  82. Satchell KJ (2003) Activation and suppression of the proinflammatory immune response by Vibrio cholerae toxins. Microbes Infect 5:1241–1247

    Article  PubMed  CAS  Google Scholar 

  83. Schild S, Lamprecht AK, Fourestier C, Lauriano CM, Klose KE, Reidl J (2005) Characterizing lipopolysaccharide and core lipid A mutant O1 and O139 Vibrio cholerae strains for adherence properties on mucus-producing cell line HT29-Rev MTX and virulence in mice. Int J Med Microbiol 295:243–251

    Article  PubMed  CAS  Google Scholar 

  84. Schild S, Nelson EJ, Camilli A (2008) Immunization with Vibrio cholerae outer membrane vesicles induces protective immunity in mice. Infect Immun 76:4554–4563

    Article  PubMed  CAS  Google Scholar 

  85. Schnellmann J, Zeltins A, Blaak H, Schrempf H (1994) The novel lectin-like protein CHB1 is encoded by a chitin-inducible Streptomyces olivaceoviridis gene and binds specifically to crystalline a-chitin of fungi and other organisms. Mol Microbiol 13:807–819

    Article  PubMed  CAS  Google Scholar 

  86. Sharkey FH, Banat IM, Marchant R (2004) Detection and quantification of gene expression in environmental bacteriology. Appl Environ Microbiol 70:3795–3806

    Article  PubMed  CAS  Google Scholar 

  87. Shime-Hattori A, Iida T, Arita M, Park KS, Kodama T, Honda T (2006) Two type IV pili of Vibrio parahaemolyticus play different roles in biofilm formation. FEMS Microbiol Lett 264:89–97

    Article  PubMed  CAS  Google Scholar 

  88. Silva AJ, Benitez JA (2006) A Vibrio cholerae relaxed (relA) mutant expresses major virulence factors, exhibits biofilm formation and motility, and colonizes the suckling mouse intestine. J Bacteriol 188:794–800

    Article  PubMed  CAS  Google Scholar 

  89. Silva AJ, Leitch GJ, Camilli A, Benitez JA (2006) Contribution of hemagglutinin/protease and motility to the pathogenesis of El Tor biotype cholera. Infect Immun 74:2072–2079

    Article  PubMed  CAS  Google Scholar 

  90. Smith B, Oliver JD (2006) In situ and in vitro gene expression by Vibrio vulnificus during entry into, persistence within, and resuscitation from the viable but nonculturable state. Appl Environ Microbiol 72:1445–1451

    Article  PubMed  CAS  Google Scholar 

  91. Smith B, Oliver JD (2006) In situ gene expression by Vibrio vulnificus. Appl Environ Microbiol 72:2244–2246

    Article  PubMed  CAS  Google Scholar 

  92. Svitil AL, Chadhain SMN, Moore JA, Kirchman DL (1997) Chitin degradation proteins produced by the marine bacterium Vibrio harveyi growing on different forms of chitin. Appl Environ Microbiol 63:408–413

    PubMed  CAS  Google Scholar 

  93. Tamplin ML, Gauzens AL, Huq A, Sack DA, Colwell RR (1990) Attachment of Vibrio cholerae serogroup O1 to zooplankton and phytoplankton of Bangladesh waters. Appl Environ Microbiol 56:1977–1980

    PubMed  CAS  Google Scholar 

  94. Tarsi R, Pruzzo C (1999) Role of surface proteins in Vibrio cholerae attachment to chitin. Appl Environ Microbiol 65:1348–1351

    PubMed  CAS  Google Scholar 

  95. Thomas KU, Joseph N, Raveendran O, Nair S (2006) Salinity-induced survival strategy of Vibrio cholerae associated with copepods in Cochin backwaters. Mar Pollut Bull 52(11):1425–1430

    Article  PubMed  CAS  Google Scholar 

  96. Tischler AD, Camilli A (2004) Cyclic diguanylate (c-di-GMP) regulates Vibrio cholerae biofilm formation. Mol Microbiol 53:857–869

    Article  PubMed  CAS  Google Scholar 

  97. Urakawa H, Rivera ING (2006) Chapter 12, aquatic environment. In: Thompson FL, Austin B, Swings JG, American Society for Microbiology (eds) The biology of Vibrios. ASM Press, Washington, DC, p 15

    Google Scholar 

  98. Velammal A, Kato M, Miyagi S, Toyozato M, Kumazawa NH (2005) An estuarine neritid gastropod, Clithon corona, a potential reservoir of thermostable direct hemolysin-producing Vibrio parahaemolyticus. J Vet Med Sci 67:833–835

    Article  PubMed  Google Scholar 

  99. Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu D, Paulsen I, Nelson KE, Nelson W et al (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74

    Article  PubMed  CAS  Google Scholar 

  100. Walker JD, Colwell RR (1976) Enumeration of petroleum-degrading microorganisms. Appl Environ Microbiol 31:198–207

    PubMed  CAS  Google Scholar 

  101. Walker JD, Colwell RR (1974) Microbial petroleum degradation: use of mixed hydrocarbon substrates. Appl Environ Microbiol 27:1053–1060

    CAS  Google Scholar 

  102. Watnick PI, Kolter R (1999) Steps in the development of a Vibrio cholerae El Tor biofilm. Mol Microbiol 34:586–595

    Article  PubMed  CAS  Google Scholar 

  103. Watnick PI, Lauriano CM, Klose KE, Croal L, Kolter R (2001) The absence of a flagellum leads to altered colony morphology, biofilm development and virulence in Vibrio cholerae O139. Mol Microbiol 39:223–235

    Article  PubMed  CAS  Google Scholar 

  104. West PA, Okpokwasili GC, Brayton PR, Grimes DJ, Colwell RR (1984) Numerical taxonomy of phenanthrene-degrading bacteria isolated from the Chesapeake Bay. Appl Environ Microbiol 48:988–993

    PubMed  CAS  Google Scholar 

  105. Yamaichi Y, Iida T, Park KS, Yamamoto K, Honda T (1999) Physical and genetic map of the genome of Vibrio parahaemolyticus: presence of two chromosomes in Vibrio species. Mol Microbiol 31:1513–1521

    Article  PubMed  CAS  Google Scholar 

  106. Yu C, Lee AM, Roseman S (1987) The sugar-specific adhesion/deadhesion apparatus of the marine bacterium Vibrio furnissii is a sensorium that continuously monitors nutrient levels in the environment. Biochem Biophys Res Commun 149:86–92

    Article  PubMed  CAS  Google Scholar 

  107. Zampini M, Pruzzo C, Bondre VP, Tarsi R, Cosmo M, Bacciaglia A, Chhabra A, Srivastava R, Srivastava BS (2005) Vibrio cholerae persistence in aquatic environments and colonization of intestinal cells: involvement of a common adhesion mechanism. FEMS Microbiol Lett 244:267–273

    Article  PubMed  CAS  Google Scholar 

  108. Zawadzka AM, Crawford RL, Paszczynski AJ (2006) Pyridine-2, 6-Bis(thiocarboxylic acid) produced by Pseudomonas stutzeri KC reduces and precipitates selenium and tellurium oxyanions. Appl Environ Microbiol 72:3119–3129

    Article  PubMed  CAS  Google Scholar 

  109. Zimmerman AM, DePaola A, Bowers JC, Krantz JA, Nordstrom JL, Johnson CN, Grimes DJ (2007) Variability of total and pathogenic Vibrio parahaemolyticus densities in northern Gulf of Mexico water and oysters. Appl Environ Microbiol 73:7589–7596

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The preparation of this review was supported in part by a NOAA Oceans and Human Health Initiative grant (NA-04-OAR4600214) and by NSF grant EF-0813285 as part of the joint NSF-NIH Ecology of Infectious Diseases program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darrell Jay Grimes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grimes, D.J., Johnson, C.N., Dillon, K.S. et al. What Genomic Sequence Information Has Revealed About Vibrio Ecology in the Ocean—A Review. Microb Ecol 58, 447–460 (2009). https://doi.org/10.1007/s00248-009-9578-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-009-9578-9

Keywords

Navigation