Skip to main content
Log in

Bacterial Community Diversity in Undisturbed Perhumid Montane Forest Soils in Taiwan

  • Soil Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The diversity and composition of soil bacterial communities in three topographic sites (summit, foot slope, and lakeshore) from subtropical montane forest ecosystem in Taiwan were examined by using 16S rRNA gene clone library analysis. This locality is temperate, perhumid, and has low soil acidity (pH < 4), which is an uncommon ecosystem in a monsoonal part of Southeast Asia. A total of 481 clones were sequenced and placed into ten phylogenetic groups according to their similarities to type strains of described organisms. Toposequence of the transect was investigated from summit to foot slope and at the lakeshore. More than 86% of the clones were affiliated with members of the Proteobacteria, Acidobacteria, and Actinobacteria. Within the Proteobacteria, the β-Proteobacteria was the most abundant, then α-Proteobacteria and γ-Proteobacteria. Based on the Shannon diversity index (H) analysis, the bacterial community in the foot slope was the most diverse (H = 0.86) and that in summit was the least diverse (H = 0.68). The composition and diversity of soil bacterial communities in the three sites suggested no trend with topographic change. Less than 20% of the sequences were Acidobacteria-affiliated clones. The low proportion of Acidobacteria observed may be related to the high soil moisture and anaerobic microhabitats. Moreover, Shannon diversity indices revealed these bacterial communities to have lower diversity than that of other temperate (H = 0.90) and tropical forest (H = 0.82) ecosystems. The extreme acidity of soil pH and high soil moisture of this forest may explain composition and reduced the diversity of these soil bacterial communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Agresti A (1992) A survey of exact inference for contingency tables. Stat Sci 7:131–153

    Article  Google Scholar 

  2. Aldén L, Demoling F, Bååth E (2001) Rapid method of determining factors limiting bacterial growth in soil. Appl Environ Microbiol 67:1830–1838

    Article  PubMed  Google Scholar 

  3. Allen AS, Schlesinger WH (2004) Nutrient limitations to soil microbial biomass and activity in loblolly pine forests. Soil Biol Biochem 36:581–589

    Article  CAS  Google Scholar 

  4. Ashelford KE, Chuzhanova NA, Fry JC, Jones AJ, Weightman AJ (2005) At least 1 in 20 16S rRNA sequence records currently held in public repositories is estimated to contain substantial anomalies. Appl Environ Microbiol 71:7724–7736

    Article  CAS  PubMed  Google Scholar 

  5. Ashelford KE, Chuzhanova NA, Fry JC, Jones AJ, Weightman AJ (2006) New screening software shows that most recent large 16S rRNA gene clone libraries contain chimeras. Appl Environ Microbiol 72:5734–5741

    Article  CAS  PubMed  Google Scholar 

  6. Bååth E, Anderson TH (2003) Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biol Biochem 35:955–963

    Article  Google Scholar 

  7. Belova S, Pankratov T, Dedysh S (2006) Bacteria of the genus Burkholderia as a typical component of the microbial community of Sphagnum peat bogs. Microbiology 75:90–96

    Article  CAS  Google Scholar 

  8. Calvaruso C, Turpault MP, Frey-Klett P (2006) Root-associated bacteria contribute to mineral weathering and to mineral nutrition in trees: a budgeting analysis. Appl Environ Microbiol 72:1258–1266

    Article  CAS  PubMed  Google Scholar 

  9. Carson JK, Campell L, Rooney D, Clipson N, Gleeson DB (2009) Minerals in soil select distinct bacterial communities in their microhabitats. FEMS Microbiol Ecol 67:381–388

    Article  CAS  PubMed  Google Scholar 

  10. Chan CO, Casper P, Sha LQ, Feng ZL, Fu Y, Yang XD, Ulrich A, Zou XM (2008) Vegetation cover of forest, shrub and pasture strongly influences soil bacterial community structure as revealed by 16S rRNA gene T-RFLP analysis. FEMS Microbiol Ecol 64:449–458

    Article  CAS  Google Scholar 

  11. Chao A (1987) Estimating the population size for capture-recapture data with unequal catchability. Biometrics 43:783–791

    Article  CAS  PubMed  Google Scholar 

  12. Chen JS, Chiu CY (2000) Effect of topography on the composition of soil organic substances in a perhumid sub-tropical montane forest ecosystem in Taiwan. Geoderma 96:19–30

    Article  CAS  Google Scholar 

  13. Chen WM, de Faria SM, James EK, Elliott GN, Lin KY, Chou JH, Sheu SY, Cnockaert M, Sprent JI, Vandamme P (2007) Burkholderia nodosa sp. nov., isolated from root nodules of the woody Brazilian legumes Mimosa bimucronata and Mimosa scabrella. Int J Syst Evol Microbiol 57:1055–1059

    Article  CAS  PubMed  Google Scholar 

  14. Chiu CY, Lai SY, Lin YM, Chiang HC (1999) Distribution of the radionuclide 137Cs in the soils of a wet mountainous forest in Taiwan. Appl Radiat Isotopes 50:1097–1103

    Article  CAS  Google Scholar 

  15. Chow ML, Radomski CC, McDermott JM, Davies J, Axelrood PE (2002) Molecular characterization of bacterial diversity in Lodgepole pine (Pinus contorta) rhizosphere soils from British Columbia forest soils differing in disturbance and geographic source. FEMS Microbiol Ecol 42:347–357

    Article  CAS  PubMed  Google Scholar 

  16. Coenye T, Vandamme P (2003) Diversity and significance of Burkholderia species occupying diverse ecological niches. Environ Microbiol 5:719–729

    Article  CAS  PubMed  Google Scholar 

  17. Coleman DC, Whitman WB (2005) Linking species richness, biodiversity and ecosystem function in soil systems. Pedobiologia 49:479–497

    Article  CAS  Google Scholar 

  18. Curtis P, Nakatsu C, Konopka A (2002) Aciduric Proteobacteria isolated from pH 2.9 soil. Arch Microbiol 178:65–70

    Article  CAS  PubMed  Google Scholar 

  19. Davidson EA, Galloway LF, Strand MK (1987) Assessing available carbon: comparison of techniques across selected forest soils. Commun Soil Sci Plant Anal 18:45–64

    Article  CAS  Google Scholar 

  20. Dedysh SN, Pankratov TA, Belova SE, Kulichevskaya IS, Liesack W (2006) Phylogenetic analysis and in situ identification of Bacteria community composition in an acidic Sphagnum peat bog. Appl Environ Microbiol 72:2110–2117

    Article  CAS  PubMed  Google Scholar 

  21. Doran JW, Zeiss MR (2000) Soil health and sustainability: managing the biotic component of soil quality. Appl Soil Ecol 15:3–11

    Article  Google Scholar 

  22. Drees KP, Neilson JW, Betancourt JL, Quade J, Henderson DA, Pryor BM, Maier RM (2006) Bacterial community structure in the hyperarid core of the Atacama Desert, Chile. Appl Environ Microbiol 72:7902–7908

    Article  CAS  PubMed  Google Scholar 

  23. Drenovsky RE, Vo D, Graham KJ, Scow KM (2004) Soil water content and organic carbon availability are major determinants of soil microbial community composition. Microb Ecol 48:424–430

    Article  CAS  PubMed  Google Scholar 

  24. Dunbar J, Barns SM, Ticknor LO, Kuske CR (2002) Empirical and theoretical bacterial diversity in four Arizona soils. Appl Environ Microbiol 68:3035–3045

    Article  CAS  PubMed  Google Scholar 

  25. Ehrlich HL (1996) How microbes influence mineral growth and dissolution. Chem Geol 132:5–9

    Article  CAS  Google Scholar 

  26. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 35:22–33

    Google Scholar 

  27. Felsenstein J (2005) PHYLIP (Phylogeny Inference Package) version 3.6. Department of Genome Sciences and Department of Biology, University of Washington, Seattle, WA

  28. Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci U S A 103:626–631

    Article  CAS  PubMed  Google Scholar 

  29. He J, Xu Z, Hughes J (2006) Molecular bacterial diversity of a forest soil under residue management regimes in subtropical Australia. FEMS Microbiol Ecol 55:38–47

    Article  CAS  PubMed  Google Scholar 

  30. Hugenholtz P, Goebel BM, Pace NR (1998) Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180:765–4774

    Google Scholar 

  31. Imberger KT, Chiu CY (2002) Topographical and seasonal effects on soil fungal and bacterial activity in subtropical, perhumid, primary and regenerated montane forests. Soil Biol Biochem 34:711–720

    Article  CAS  Google Scholar 

  32. Jackson C, Liew K, Yule C (2009) Structural and functional changes with depth in microbial communities in a tropical Malaysian peat swamp forest. Microb Ecol 57:402–412

    Article  PubMed  Google Scholar 

  33. Jangid K, Williams MA, Franzluebbers AJ, Sanderlin JS, Reeves JH, Jenkins MB, Endale DM, Coleman DC, Whitman WB (2008) Relative impacts of land-use, management intensity and fertilization upon soil microbial community structure in agricultural systems. Soil Biol Biochem 40:2843–2853

    Article  CAS  Google Scholar 

  34. Jannsen PH (2006) Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl Environ Microbiol 72:1719–1728

    Article  Google Scholar 

  35. Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic, New York, p 21–132

    Google Scholar 

  36. Kemp PF, Aller JY (2004) Bacterial diversity in aquatic and other environments: what 16S rDNA libraries can tell us. FEMS Microbiol Ecol 47:161–177

    Article  CAS  PubMed  Google Scholar 

  37. Kim HB, Park MJ, Yang HC, An DS, Jin HZ, Yang DC (2006) Burkholderia ginsengisoli sp. nov., a β-glucosidase-producing bacterium isolated from soil of a ginseng field. Int J Syst Evol Microbiol 56:2529–2533

    Article  CAS  PubMed  Google Scholar 

  38. Kim JS, Sparovek G, Longo RM, De Melo WJ, Crowley D (2007) Bacterial diversity of terra preta and pristine forest soil from the Western Amazon. Soil Biol Biochem 39:684–690

    Article  CAS  Google Scholar 

  39. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackbrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, p 115–175

    Google Scholar 

  40. Lasher C, Dyszynski G, Everett K, Edmonds J, Ye W, Sheldon W, Wang S, Joye SB, Moran MA, Whitman WB (2009) The diverse bacterial community in intertidal, anaerobic sediments at Sapelo Island, Georgia. Microb Ecol 58:244–261

    Article  PubMed  Google Scholar 

  41. Lauber CL, Strickland MS, Bradford MA, Fierer N (2008) The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol Biochem 40:2407–2415

    Article  CAS  Google Scholar 

  42. Lazzaro A, Widmer F, Sperisen C, Frey B (2008) Identification of dominant bacterial phylotypes in a cadmium-treated forest soil. FEMS Microbiol Ecol 63:143–155

    Article  CAS  PubMed  Google Scholar 

  43. Lin TF, Huang HI, Shen FT, Young CC (2006) The protons of gluconic acid are the major factor responsible for the dissolution of tricalcium phosphate by Burkholderia cepacia CC-Al74. Bioresour Technol 97:957–960

    Article  CAS  PubMed  Google Scholar 

  44. Lipson DA (2007) Relationships between temperature responses and bacterial community structure along seasonal and altitudinal gradients. FEMS Microbiol Ecol 59:418–427

    Article  CAS  PubMed  Google Scholar 

  45. Männistö MK, Tiirola M, Häggblom MM (2007) Bacterial communities in Arctic fjelds of Finnish Lapland are stable but highly pH-dependent. FEMS Microbiol Ecol 59:452–465

    Article  PubMed  Google Scholar 

  46. McCaig AE, Glover LA, Prosser JI (1999) Molecular analysis of bacterial community structure and diversity in unimproved and improved upland grass pastures. Appl Environ Microbiol 65:1721–1730

    CAS  PubMed  Google Scholar 

  47. McCaig AE, Glover LA, Prosser JI (2001) Numerical analysis of grassland bacterial community structure under different land management regimens by using 16S ribosomal DNA sequence data and denaturing gradient gel electrophoresis banding patterns. Appl Environ Microbiol 67:4554–4559

    Article  CAS  PubMed  Google Scholar 

  48. Morales S, Mouser P, Ward N, Hudman S, Gotelli N, Ross D, Lewis T (2006) Comparison of bacterial communities in New England Sphagnum bogs using terminal restriction fragment length polymorphism (T-RFLP). Microb Ecol 52:34–44

    Article  CAS  PubMed  Google Scholar 

  49. Oline DK (2006) Phylogenetic comparisons of bacterial communities from serpentine and nonserpentine soils. Appl Environ Microbiol 72:6965–6971

    Article  CAS  PubMed  Google Scholar 

  50. Pai CW, Wang MK, Chiu CY (2007) Clay mineralogical characterization of a toposequence of perhumid subalpine forest soils in northeastern Taiwan. Geoderma 128:177–184

    Article  Google Scholar 

  51. Perrière G, Gouy M (1996) WWW-Query: an on-line retrieval system for biological sequence banks. Biochimie 78:364–369

    Article  PubMed  Google Scholar 

  52. Reis VM, Estrada-de los Santos P, Tenorio-Salgado S, Vogel J, Stoffels M, Guyon S, Mavingui P, Baldani VLD, Schmid M, Baldani JI, Balandreau J, Hartmann A, Caballero-Mellado J (2004) Burkholderia tropica sp. nov., a novel nitrogen-fixing, plant-associated bacterium. Int J Syst Evol Microbiol 54:2155–2162

    Article  CAS  PubMed  Google Scholar 

  53. Sait M, Davis KER, Janssen PH (2006) Effect of pH on isolation and distribution of members of subdivision 1 of the phylum Acidobacteria occurring in soil. Appl Environ Microbiol 72:1852–1857

    Article  CAS  PubMed  Google Scholar 

  54. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  55. Schloss PD, Handelsman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71:1501–1506

    Article  CAS  PubMed  Google Scholar 

  56. Shannon CE, Weaver W (1963) The mathematical theory of communication. University of Illinois Press, Urbana

    Google Scholar 

  57. Singh BK, Nazaries L, Munro S, Anderson IC, Campbell CD (2006) Use of multiplex terminal restriction fragment length polymorphism for rapid and simultaneous analysis of different components of the soil microbial community. Appl Environ Microbiol 72:7278–7285

    Article  CAS  PubMed  Google Scholar 

  58. Singleton DR, Furlong MA, Rathbun SL, Whitman WB (2001) Quantitative comparisons of 16S rRNA gene sequence libraries from environmental samples. Appl Environ Microbiol 67:4374–4376

    Article  CAS  PubMed  Google Scholar 

  59. Sun HY, Deng SP, Raun WR (2004) Bacterial community structure and diversity in a century-old Manure-treated agroecosystem. Appl Environ Microbiol 70:5868–5874

    Article  CAS  PubMed  Google Scholar 

  60. Upchurch R, Chiu CY, Everett K, Dyszynski G, Coleman DC, Whitman WB (2008) Differences in the composition and diversity of bacterial communities from agricultural and forest. Soil Biol Biochem 40:1294–1305

    Article  CAS  Google Scholar 

  61. Uroz S, Calvaruso C, Turpault MP, Pierrat JC, Mustin C, Frey-Klett P (2007) Effect of the mycorrhizosphere on the genotypic and metabolic diversity of the bacterial communities involved in mineral weathering in a forest soil. Appl Environ Microbiol 73:3019–3027

    Article  CAS  PubMed  Google Scholar 

  62. Vandamme P, Opelt K, Knochel N, Berg C, Schonmann S, De Brandt E, Eberl L, Falsen E, Berg G (2007) Burkholderia bryophila sp. nov. and Burkholderia megapolitana sp. nov., moss-associated species with antifungal and plant-growth-promoting properties. Int J Syst Evol Microbiol 57:2228–2235

    Article  CAS  PubMed  Google Scholar 

  63. Viallard V, Poirier I, Cournoyer B, Haurat J, Wiebkin S, Ophel-Keller K, Balandreau J (1998) Burkholderia graminis sp. nov., a rhizospheric Burkholderia species, and reassessment of [Pseudomonas] phenazinium, [Pseudomonas] pyrrocinia and [Pseudomonas] glathei as Burkholderia. Int J Syst Bacteriol 48:549–563

    CAS  PubMed  Google Scholar 

  64. Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are indebted to critical suggestions by Prof. S.M. Chaw. Gratitude is also due to Mr. C.P. Lin for his valuable help in experiments. The study was supported by Academia Sinica and National Science Council grants (NSC 97-2321-B001-028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chih-Yu Chiu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, YT., Huang, YJ., Tang, SL. et al. Bacterial Community Diversity in Undisturbed Perhumid Montane Forest Soils in Taiwan. Microb Ecol 59, 369–378 (2010). https://doi.org/10.1007/s00248-009-9574-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-009-9574-0

Keywords

Navigation