Skip to main content
Log in

Species Composition of Bacterial Communities Influences Attraction of Mosquitoes to Experimental Plant Infusions

  • Microbiology of Aquatic Systems
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

In the container habitats of immature mosquitoes, catabolism of plant matter and other organic detritus by microbial organisms produces metabolites that mediate the oviposition behavior of Aedes aegypti and Aedes albopictus. Public health agencies commonly use oviposition traps containing plant infusions for monitoring populations of these mosquito species, which are global vectors of dengue viruses. In laboratory experiments, gravid females exhibited significantly diminished responses to experimental infusions made with sterilized white oak leaves, showing that attractive odorants were produced through microbial metabolic activity. We evaluated effects of infusion concentration and fermentation time on attraction of gravid females to infusions made from senescent bamboo or white oak leaves. We used plate counts of heterotrophic bacteria, total counts of 4′,6-diamidino-2-phenylindole-stained bacterial cells, and 16S ribosomal DNA (rDNA) polymerase chain reaction–denaturing gradient gel electrophoresis (DGGE) to show that changes in the relative abundance of bacteria and the species composition of bacterial communities influenced attraction of gravid A. aegypti and A. albopictus mosquitoes to infusions. DGGE profiles showed that bacterial species composition in infusions changed over time. Principal components analysis indicated that oviposition responses to plant infusions were in general most affected by bacterial diversity and abundance. Analysis of bacterial 16S rDNA sequences derived from DGGE bands revealed that Proteobacteria (Alpha-, Beta-, Delta-, and Gamma-) were the predominant bacteria detected in both types of plant infusions. Gravid A. aegypti were significantly attracted to a mix of 14 bacterial species cultured from bamboo leaf infusion. The oviposition response of gravid mosquitoes to plant infusions is strongly influenced by abundance and diversity of bacterial species, which in turn is affected by plant species, leaf biomass, and fermentation time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Allan SA, Bernier UR, Kline DL (2005) Evaluation of oviposition substrates and organic infusions on collection of Culex in Florida. J Am Mosq Control Assoc 21:268–273

    Article  PubMed  Google Scholar 

  2. Allan SA, Kline DL (1995) Evaluation of organic infusions and synthetic compounds mediating oviposition in Aedes albopictus and Aedes aegypti (Diptera: Culicidae). J Chem Ecol 21:1847–1860

    Article  CAS  Google Scholar 

  3. Amann R, Ludwig W (2000) Ribosomal RNA-targeted nucleic acid probes for studies in microbial ecology. FEMS Microbiol Rev 24:555–565

    Article  CAS  PubMed  Google Scholar 

  4. Bell T, Ager D, Song J-I, Newman JA, Thompson IP, Lilley AK, van der Gast CJ (2007) Larger islands house more bacterial taxa. Science 308:1884

    Article  CAS  Google Scholar 

  5. Benzon GL, Apperson CS (1988) Reexamination of chemically mediated oviposition behavior in Aedes aegypti (L.) (Diptera: Culicidae). J Med Entomol 25:158–164

    CAS  PubMed  Google Scholar 

  6. Chadee DD, Mendis C, Beier JC (1993) Diel oviposition periodicity of Anopheline mosquitoes (Diptera: Culicidae) from the Americas: Anopheles albimanus Wiedemann and Anopheles freeborni Aitken. Ann Trop Med Parasitol 87:501–507

    CAS  PubMed  Google Scholar 

  7. Colton YM, Chadee DD, Severson DW (2003) Natural skip oviposition of the mosquito Aedes aegypti indicated by codominant genetic markers. Med Vet Entomol 17:195–204

    Article  CAS  PubMed  Google Scholar 

  8. Draper NR, Smith H (1981) Applied regression analysis. Wiley, New York

    Google Scholar 

  9. Duineveld BM, Kowalchuk GA, Keijzer A, van Elsas JD, van Veen JA (2001) Analysis of bacterial communities in the rhizosphere of chrysanthemum via denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA as well as DNA fragments coding for 16S rRNA. Appl Environ Microbiol 67:172–178

    Article  CAS  PubMed  Google Scholar 

  10. Ellis RJ, Morgan P, Weightman AJ, Fry JC (2003) Cultivation-dependent and -independent approaches for determining bacterial diversity in heavy-metal-contaminated soil. Appl Environ Microbiol 69:3223–3230

    Article  CAS  PubMed  Google Scholar 

  11. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  12. Hasselschwert D, Rockett CL (1988) Bacteria as ovipositional attractants for Aedes aegypti (Diptera: Culicidae). Great Lakes Entomol 21:163–168

    Google Scholar 

  13. Hazard EI, Mayer MS, Savage KE (1967) Attraction and oviposition stimulation of gravid female mosquitoes by bacteria isolated from hay infusions. Mosq News 27:133–136

    Google Scholar 

  14. Hoefel D, Monis PT, Grooby WL, Andrews S, Saint CP (2005) Culture-independent techniques for rapid detection of bacteria associated with loss of chloramine residual in a drinking water system. Appl Environ Microbiol 71:6479–6488

    Article  CAS  PubMed  Google Scholar 

  15. Ikeshoji T, Ichimoto I, Konish J, Naoshima Y, Ueda H (1979) 7, 11-Dimethyl octadecane—an oviposition attractant for Aedes aegypti produced by Pseudomonas aeruginosa on capric acid substrate. J Pestic Sci 4(187):194

    Google Scholar 

  16. Isoe J, Beehler JW, Millar JG, Mulla MS (1995) Oviposition responses of Culex tarsalis and Culex quinquefasciatus to aged Bermuda grass infusions. J Am Mosq Control Assoc 11:39–44

    CAS  PubMed  Google Scholar 

  17. Isoe J, Millar JG (1995) Characterization of factors mediating oviposition site choice by Culex tarsalis. J Am Mosq Control Assoc 11:21–28

    CAS  PubMed  Google Scholar 

  18. Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic, New York, pp 21–132

    Google Scholar 

  19. Kadlec RH, Knight RL (1996) Treatment wetlands. CRC/Lewis, Boca Raton 893 pp

    Google Scholar 

  20. Kaufman MG, Walker ED, Smith TW, Merritt RW, Klug MJ (1999) Effects of larval mosquitoes (Aedes triseriatus) and stemflow on microbial community dynamics in container habitats. Appl Environ Microbiol 65:2661–2673

    CAS  PubMed  Google Scholar 

  21. Kirchman DL (2002) The ecology of Cytophaga–Flavobacteria in aquatic environments. FEMS Microbiol Ecol 39:91–100

    CAS  PubMed  Google Scholar 

  22. Maw MG (1970) Capric acid as a larvicide and an oviposition stimulant for mosquitoes. Nature 227:1154–1155

    Article  CAS  PubMed  Google Scholar 

  23. Mboera LEG, Knols BGJ, Braks MAH, Takken W (2000) Comparison of carbon dioxide-baited trapping systems for sampling outdoor mosquito populations in Tanzania. Med Vet Entomol 14:257–263

    Article  PubMed  Google Scholar 

  24. Merritt RW, Dadd RH, Walker ED (1992) Feeding behavior, natural food, and nutritional relationships of larval mosquitoes. Annu Rev Entomol 37:349–376

    CAS  PubMed  Google Scholar 

  25. Millar JG, Chaney JD, Mulla MS (1992) Identification of oviposition attractants for Culex quinquefasciatus from fermented Bermuda grass infusions. J Am Mosq Control Assoc 8:11–17

    CAS  PubMed  Google Scholar 

  26. Min BR, Pinchak WE, Merkel R, Walker S, Tomita G, Anderson RC (2008) Comparative antimicrobial activity of tannin extracts from perennial plants on mastitis pathogens. Sci Res Essays 3:66–73

    Google Scholar 

  27. Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    CAS  PubMed  Google Scholar 

  28. Neter T, Kutner MH, Nachtsheim CJ, Wasserman W (1996) Applied linear statistical models, 4th edn. McGraw-Hill, Boston

    Google Scholar 

  29. Nguyen TTH, Su TY, Mulla MS (1999) Bacteria and mosquito abundance in microcosms enriched with organic matter and treated with a Bacillus thuringiensis subsp. israelensis formulation. J Vector Ecol 24:191–201

    CAS  PubMed  Google Scholar 

  30. Polz MF, Cavanaugh CM (1998) Bias in template-to-product ratios in multitemplate PCR. Appl Environ Microbiol 64:3724–3730

    CAS  PubMed  Google Scholar 

  31. Ponnusamy L, Xu N, Nojima S, Wesson DM, Schal C, Apperson CS (2008) Identification of bacteria and bacteria-associated chemical cues that mediate oviposition site preferences by Aedes aegypti. Proc Natl Acad Sci U S A 105:9262–9267

    Article  CAS  PubMed  Google Scholar 

  32. Ponnusamy L, Xu N, Stav G, Wesson DM, Schal C, Apperson CS (2008) Diversity of bacterial communities in container habitats of mosquitoes. Microb Ecol 56:593–603

    Article  PubMed  Google Scholar 

  33. Porter KG, Feig YS (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25:943–948

    Article  Google Scholar 

  34. Rawlins SC, Martinez R, Wiltshire S, Legall G (1998) A comparison of surveillance systems for the dengue vector Aedes aegypti in Port of Spain, Trinidad. J Am Mosq Control Assoc 14:131–136

    CAS  PubMed  Google Scholar 

  35. Reasoner DJ, Geldreicht EE (1985) A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49:1–7

    CAS  PubMed  Google Scholar 

  36. Reiter P, Amador MA, Colon N (1991) Enhancement of the CDC ovitrap with hay infusions for daily monitoring of Aedes aegypti populations. J Am Mosq Control Assoc 7:52–55

    CAS  PubMed  Google Scholar 

  37. Rejmankova E, Higashi R, Grieco JJ, Achee NN, Roberts D (2005) Volatile substances from larval habitats mediate species-specific oviposition in Anopheles mosquitoes. J Med Entomol 42:95–103

    Article  PubMed  Google Scholar 

  38. Rejmankova E, Roberts DR, Manguin S, Pope KO, Komárek J, Post RA (1996) Anopheles albimanus (Diptera: Culicidae) and cyanobacteria: an example of larval habitat selection. Environ Entomol 25:1058–1067

    CAS  PubMed  Google Scholar 

  39. Ritchie SA (1984) Hay infusion and isopropyl alcohol-baited CDC light trap—a simple effective trap for gravid Culex mosquitoes. Mosq News 44:404–407

    Google Scholar 

  40. Rivera ING, Lipp EK, Gil A, Choopun N, Huq A, Colwell RR (2003) Method of DNA extraction and application of multiplex polymerase chain reaction to detect toxigenic Vibrio cholerae O1 and O139 from aquatic ecosystems. Environ Microbiol 5:599–606

    Article  CAS  PubMed  Google Scholar 

  41. Sanford A, Morgan J, Evans D, Ducklow H (2001) Bacterioplankton dynamics in estuarine mesocosms: effects of tank shape and size. Microbiol Ecol 41:45–55

    CAS  Google Scholar 

  42. Sant’Ana AL, Rogue RA, Eiras AE (2006) Characteristics of grass infusions as oviposition attractants to Aedes (Stegomyia) (Diptera: Culicidae). J Med Entomol 43:214–220

    Article  Google Scholar 

  43. Scalbert A (1991) Antimicrobial properties of tannins. Phytochemistry 30:3875–3883

    Article  CAS  Google Scholar 

  44. Schallenberg M, Kalff J, Rasmussen JB (1989) Solutions to problems involving enumeration of sediment bacteria by direct counts. Appl Environ Microbiol 55:1214–1219

    PubMed  CAS  Google Scholar 

  45. Shannon C, Weaver W (1963) The mathematical theory of communication. University of Illinois Press, Urbana

    Google Scholar 

  46. Singleton DR, Furlong MA, Rathburn SL, Whitman WB (2001) Quantitative comparisons of 16S rRNA gene sequence libraries from environmental samples. Appl Environ Microbiol 67:4374–4376

    Article  CAS  PubMed  Google Scholar 

  47. Sinsabaugh RL, Linkins AE (1990) Enzymatic and chemical analysis of particulate organic matter from a boreal river. Freshwater Biol 23:301–309

    Article  CAS  Google Scholar 

  48. Sumba LA, Guda TO, Deng AL, Hassanali A, Beier JC, Knols BGJ (2004) Mediation of oviposition site selection in the African malaria mosquito Anopheles gambiae (Diptera: Culicidae) by semiochemicals of microbial origin. Int J Trop Insect Sci 24:260–265

    Article  Google Scholar 

  49. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  50. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  51. Trexler JD, Apperson CS, Schal C (1998) Laboratory and field evaluations of oviposition responses of Aedes albopictus and Aedes triseriatus (Diptera: Culicidae) to oak leaf infusions. J Med Entomol 35:967–976

    CAS  PubMed  Google Scholar 

  52. Trexler JD, Apperson CS, Zurek L, Gemeno C, Schal C, Kaufman M, Walker E, Watson DW, Wallace L (2003) Role of bacteria in mediating oviposition responses of Aedes albopictus (Diptera: Culicidae). J Med Entomol 40:841–848

    Article  PubMed  Google Scholar 

  53. Vázquez-Martínez MG, Rodríguez MH, Arredondo-Jiménez JI, Méndez-Sánchez JD, Bond-Compeán JG, Gold-Morgan M (2002) Cyanobacteria associated with Anopheles albimanus (Diptera: Culicidae) larval habitats in Southern Mexico. J Med Entomol 39:825–832

    Article  PubMed  Google Scholar 

  54. Wolfaardt GM, Lawrence JR, Robarts RD, Caldwell SJ, Caldwell DE (1994) Multicellular organization in a degradative biofilm community. Appl Environ Microbiol 60:434–446

    CAS  PubMed  Google Scholar 

  55. Yang CH, Crowley DE, Borneman J, Keen NT (2001) Microbial phyllosphere populations are more complex than previously realized. Proc Natl Acad Sci U S A 98:3889–3894

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Partial support for our research was provided by the NIH-NIAID through cooperative agreement U01-AI-58303-01, the Blanton J. Whitmire endowment at North Carolina State University, and the Bill and Melinda Gates Foundation. We thank Luma Abu Ayyash for excellent assistance in the laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles S. Apperson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Table 1

Bacterial phylotypes identified* from predominant 16S rDNA-DGGE bands from BL infusions. Phylogenetic affiliations were determined based on classification of band sequences in a neighbor-joining phylogenetic tree (DOC 50 kb)

Supplemental Table 2

Bacterial phylotypes identified* from predominant 16S rDNA-DGGE bands from WOL infusions. Phylogenetic affiliations were determined based on classification of band sequences in a neighbor-joining phylogenetic tree (DOC 60 kb)

Supplemental Table 3

Results of mixed-model ANOVA of effects of trial and fermentation time (day) on bacterial cell growth and diversity in BL infusions (DOC 38 kb)

Supplemental Table 4

Effects of infusion concentration§ and fermentation time on bacterial species diversity in WOL infusions (DOC 37 kb)

Supplemental Table 5

Correlation matrix for infusion-associated variables used in principal components analysis (DOC 29.5 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ponnusamy, L., Wesson, D.M., Arellano, C. et al. Species Composition of Bacterial Communities Influences Attraction of Mosquitoes to Experimental Plant Infusions. Microb Ecol 59, 158–173 (2010). https://doi.org/10.1007/s00248-009-9565-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-009-9565-1

Keywords

Navigation