Skip to main content
Log in

Denitrifying Bacterial Community Composition Changes Associated with Stages of Denitrification in Oxygen Minimum Zones

  • Original Article
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Denitrification in the ocean is a major sink for fixed nitrogen in the global N budget, but the process is geographically restricted to a few oceanic regions, including three oceanic oxygen minimum zones (OMZ) and hemipelagic sediments worldwide. Here, we describe the diversity and community composition of microbes responsible for denitrification in the OMZ using polymerase chain reaction, sequence and fragment analysis of clone libraries of the signature genes (nirK and nirS) that encode the enzyme nitrite reductase, responsible for key denitrification transformation steps. We show that denitrifying assemblages vary in space and time and exhibit striking changes in diversity associated with the progression of denitrification from initial anoxia through nitrate depletion. The initial denitrifying assemblage is highly diverse, but succession on the scale of 3–12 days leads to a much less diverse assemblage and dominance by one or a few phylotypes. This progression occurs in the natural environment as well as in enclosed incubations. The emergence of dominants from a vast reservoir of rare types has implications for the maintenance of diversity of the microbial population and suggests that a small number of microbial dominants may be responsible for the greatest rates of transformations involving nitrous oxide and global fixed nitrogen loss. Denitrifying blooms, driven by a few types responding to episodic environmental changes and distributed unevenly in time and space, are consistent with the sampling effect model of diversity–function relationships. Canonical denitrification thus appears to have important parallels with both primary production and nitrogen fixation, which are typically dominated by regionally and temporally restricted blooms that account for a disproportionate share of these processes worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Aarssen LW (1997) High productivity in grassland ecosystems: affected by species diversity or productive species? Oikos 80:183–184

    Article  Google Scholar 

  2. Bange HW, Andreae MO, Lal S, Law CS, Naqvi SWA, Patra PK, Rixen T, Upstill-Goddard RC (2001) Nitrous oxide emissions from the Arabian Sea: a synthesis. Atmos Chem Phys 1:61–71

    CAS  Google Scholar 

  3. Bange HW, Naqvi SWA, Codispoti LA (2005) The nitrogen cycle in the Arabian Sea. Progress in Oceanography 65:145–158

    Article  Google Scholar 

  4. Braker G, Zhou JZ, Wu LY, Devol AH, Tiedje JM (2000) Nitrite reductase genes (nirK and nirS) as functional markers to investigate diversity of denitrifying bacteria in Pacific northwest marine sediment communities. Applied and Environmental Microbiology 66:2096–2104

    Article  PubMed  CAS  Google Scholar 

  5. Brettar I, Rheinheimer G (1992) Influence of carbon availability on denitrification in the Central Baltic Sea. Limnol Oceanogr 37:1146–1163

    CAS  Google Scholar 

  6. Capone DG, Burns JA, Montoya JP, Subramaniam A, Mahaffey C, Gunderson T, Michaels AF, Carpenter EJ (2005) Nitrogen fixation by Trichodesmium spp.: an important source of new nitrogen to the tropical and subtropical North Atlantic Ocean. Glob Biogeochem Cycles 19:GB2024

    Article  CAS  Google Scholar 

  7. Carpenter JH (1965) The Chesapeake Bay Institute Technique for the Winkler dissolved oxygen method. Limnology and Oceanography 10:141–143

    CAS  Google Scholar 

  8. Codispoti L, Brandes J, Christensen J, Devol A, Naqvi S, Paerl H, Yoshinari T (2001) The oceanic fixed nitrogen and nitrous oxide budgets: moving targets as we enter the anthropocene? Sci Mar 65:85–105

    Article  CAS  Google Scholar 

  9. Codispoti LA, Yoshinari T, Devol AH (2005) Suboxic respiration in the oceanic water columm. In: del Giorgio PA, Williams PJL (eds) Respiration in aquatic ecosystems. Oxford University Press, Oxford, pp 225–247

    Chapter  Google Scholar 

  10. Deutsch C, Sarmiento JL, Sigman DM, Gruber N, Dunne JP (2007) Spatial coupling of nitrogen inputs and losses in the ocean. Nature 445:163–167

    Article  PubMed  CAS  Google Scholar 

  11. Devol AH (1978) Bacterial oxygen uptake kinetics as related to biological processes in oxygen deficient zones of the oceans. Deep-Sea Res 25:137–146

    Article  Google Scholar 

  12. Devol AH, Uhlenhopp AG, Naqvi SWA, Brandes JA, Jayakumar DA, Naik H, Gaurin S, Codispoti LA, Yoshinari T (2006) Denitrification rates and excess nitrogen gas concentrations in the Arabian Sea oxygen deficient zone. Deep-Sea Res 53:1533–1547

    Article  CAS  Google Scholar 

  13. Ferguson RL, Buckley EN, Palumbo AV (1984) Response of marine bacterioplankton to differential filtration and confinement. Appl Environ Microbiol 47:49–55

    PubMed  CAS  Google Scholar 

  14. Garfield PD, Packard TT, Friederich GE, Codispoti LA (1983) A subsurface particle maximum layer and enhanced microbial activity in the secondary nitrite maximum of the northeastern tropical Pacific Ocean. J Mar Res 41:747–768

    Article  CAS  Google Scholar 

  15. Goering JJ (1968) Denitrification in oxygen minimum layer of eastern tropical Pacific Ocean. Deep-Sea Res 15:157–164

    CAS  Google Scholar 

  16. Grasshof K, Ehrhardt M, Kremling K (1983) Methods of seawater analysis, Vol. Verlag Chemie GmbH, Weinheim

    Google Scholar 

  17. Heck KL, Belle Bv, Simberloff D (1975) Explicit calculation of thee rarefaction diversity measurement and the determination of sufficient sample size. Ecology 56:1459–1461

    Article  Google Scholar 

  18. Holland SM (2001) Analytic Rarefaction 1.3, Vol. University of Georgia, Athens, GA

    Google Scholar 

  19. Hughes JB, Hellmann JJ, Ricketts TH, Bohannan BJM (2001) Counting the uncountable: Statistical approaches to estimating microbial diversity. Applied and Environmental Microbiology 67:4399–4406

    Article  PubMed  CAS  Google Scholar 

  20. Huston MA (1997) Hidden treatments in ecological experiments: re-evaluating the ecosystem function of biodiversity. Oecologia 110:449–460

    Article  Google Scholar 

  21. Jayakumar DA, Francis CA, Naqvi SWA, Ward BB (2004) Diversity of nitrite reductase genes (nirS) in the denitrifying water column of the coastal Arabian Sea. Aquat Microb Ecol 34:69–78

    Article  Google Scholar 

  22. Jayakumar A, Naqvi, S.W.A and Ward B.B. Distribution and Relative Quantification of key Genes Involved in Fixed Nitrogen Loss From the Arabian Sea Oxygen Minimum Zone. (in press, AGU monograph—‘Indian Ocean Biogeochemical Processes and Ecological Variability’)

  23. Korner H, Zumft WG (1989) Expression of denitrification enzymes in response to the dissolved-oxygen level and respiratory substrate in continuous culture of Pseudomonas stutzeri. Appl Environ Microbiol 55:1670–1676

    PubMed  CAS  Google Scholar 

  24. Kuypers MMM, Lavik G, Woebken D, Schmid M, Fuchs BM, Amann R, Jorgensen BB, Jetten MSM (2005) Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation. Proceedings of the National Academy of the United States of America 102:6478–6483

    Article  CAS  Google Scholar 

  25. Lam P, Jensen MM, Lavik G, McGinnis DF, Muller B, Schubert CJ, Amann R, Thamdrup B, Kuypers MMM (2007) Linking crenarchaeal and bacterial nitrification to anammox in the Black Sea. Proceedings Of The National Academy Of Sciences Of The United States Of America 104:7104–7109

    Article  PubMed  CAS  Google Scholar 

  26. Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A, Hooper DU, Huston MA, Raffaelli D, Schmid B, Tilman D, Wardle DA (2001) Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294:804–808

    Article  PubMed  CAS  Google Scholar 

  27. McCune G, Grace JB (2002) Analysis of ecological communities, Vol. MjM Software Design, Gleneden Beach, OR, USA

    Google Scholar 

  28. Morris RM, Rappe MS, Connon SA, Vergin KL, Siebold WA, Carlson CA, Giovannoni SJ (2002) SAR11 clade dominates ocean surface bacterioplankton communities. Nature 420:806–810

    Article  PubMed  CAS  Google Scholar 

  29. Morrison JM, Codispoti LA, Smith SL, Wishner K, Flagg C, Gardner WD, Gaurin S, Naqvi SWA, Manghnani V, Prosperie L, Gundersen JS (1999) The oxygen minimum zone in the Arabian Sea during 1995. Deep-Sea Res II-Top Stud Oceanogr 46:1903–1931

    Article  CAS  Google Scholar 

  30. Naqvi SWA, Jayakumar DA, Narvekar PV, Naik H, Sarma V, D’Souza W, Joseph S, George MD (2000) Increased marine production of N2O due to intensifying anoxia on the Indian continental shelf. Nature 408:346–349

    Article  PubMed  CAS  Google Scholar 

  31. Naqvi SWA, Naik H, Narvekar PV (2003) The Arabian Sea. In: Black K, Shimmield G (eds) Biogeochemistry of marine systems. Blackwell, Oxford, pp 156–206

    Google Scholar 

  32. Naqvi SWA, Kumar MD, Narvekar PV, De Sousa SN, George MD, D’Silva C (1993) An intermediate nepheloid layer associated with high microbial metabolic rates and denitrification in the northwest Indian Ocean. J Geophys Res 98:16469–16479

    Article  Google Scholar 

  33. Naqvi SWA, Shailaja MS (1993) Activity of the respiratory electron-transport system and respiration rates within the oxygen minimum layer of the Arabian Sea. Deep-Sea Res II-Top Stud Oceanogr 40:687–695

    Article  CAS  Google Scholar 

  34. Naqvi SWA, Yoshinari T, Jayakumar DA, Altabet MA, Narvekar PV, Devol AH, Brandes JA, Codispoti LA (1998) Budgetary and biogeochemical implications of N2O isotope signatures in the Arabian Sea. Nature 391:462–464

    Article  Google Scholar 

  35. Nicholls JC, Davies IM, Trimmer M (2007) High-resolution profiles and nitrogen isotope tracing reveal a dominant source of nitrous oxide and multiple pathways of nitrogen gas formation in the central Arabian Sea. Limnol Oceanogr 52:156–168

    CAS  Google Scholar 

  36. Pak H, Codispoti LA, Zaneveld JRV (1980) On the intermediate particle maximum associated with the oxygen-poor waters off western South America. Deep-Sea Res 27:783–797

    Article  Google Scholar 

  37. Porter KG, Feig YS (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25:943–948

    Article  Google Scholar 

  38. Santoro AE, Boehm AB, Francis CA (2006) Denitrifier community composition along a nitrate and salinity gradient in a coastal aquifer. Appl Environ Microbiol 72:2102–2109

    Article  PubMed  CAS  Google Scholar 

  39. Scala DJ, Kerkhof LJ (1999) Diversity of nitrous oxide reductase (nosZ) genes in continental shelf sediments. Applied and Environmental Microbiology 65:11681–11687

    Google Scholar 

  40. Schloss PD, Handlesman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71:1501–1506

    Article  PubMed  CAS  Google Scholar 

  41. Schmid M, Walsh KA, Webb R, Rijpstra WIC, van de Pas-Schoonen K, Verbreuggen ML, Hill TCJ, Moffett BF, Fuerst J, Schouten S (2003) Candidatus “Scalindua broad”, sp. nov., Candidatus “Scalindua wagneri”, sp. nov., two new species of anaerobic ammonia oxidizing bacteria. Syst Appl Microbiol 26:529–538

    Article  PubMed  CAS  Google Scholar 

  42. Schwartz MW, Brigham CA, Hoeksema JG, Lyons KG, Mills MH, van Mantgem PJ (2000) Linking biodiversity to ecosystem functeion: implications for conservation ecology. Oecologia 122:297–305

    Article  Google Scholar 

  43. Spinrad RW, Glover HE, Ward BB, Codispoti LA, Kullenberg G (1989) Suspended particle and bacterial maxima in Peruvian coastal waters during a cold water anomaly. Deep-Sea Res 36:715–733

    Article  CAS  Google Scholar 

  44. Strous M, Heijnen JJ, Kuenen JG, Jetten MSM (1998) The sequencing batch reactor as a poweful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms. Appl Environ Microbiol 50:589–596

    CAS  Google Scholar 

  45. Strous M, Pelletier E, Mangenot S, Rattei T, Lehner A, Taylor MW, Horn M, Daims H, Bartol-Mavel D, Wincker P, Barbe V, Fonknechten N, Vallenet D, Segurens B, Schenowitz-Truong C, Medigue C, Collingro A, Snel B, Dutilh BE, Op den Camp HJM, van der Drift C, Cirpus I, van de Pas-Schoonen KT, Harhangi HR, van Niftrik L, Schmid M, Keltjens J, van de Vossenberg J, Kartal B, Meier H, Frishman D, Huynen MA, Mewes HW, Weissenbach J, Jetten MSM, Wagner M, Le Paslier D (2006) Deciphering the evolution and metabolism of an anammox bacterium from a community genome. Nature 440:790–794

    Article  PubMed  Google Scholar 

  46. Thamdrup B, Dalsgaard T, Jensen MM, Ulloa O, Farias L, Escribano R (2006) Anaerobic ammonium oxidation in the oxygen-deficient waters off northern Chile. Limnol Oceanogr 51:2145–2156

    CAS  Google Scholar 

  47. Thompson JD, Gibson RJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  48. Tilman D, Lehman CL (2002) Biodiversity, composition, and ecosystem processes: theory and concepts. In: Kinzig AP, Pacala SW, Tilman D (eds) The functional consequences of biodiversity, empirical progress and theoretical extensions. Princeton University Press, Princeton, NJ, USA

    Google Scholar 

  49. Tilman D, Lehman CL, Thompson KT (1997) Plant diversity and ecosystem productivity: theoretical considerations. Proc Natl Acad Sci USA 94:1857–1861

    Article  PubMed  CAS  Google Scholar 

  50. Ward BB, Tuit CB, Jayakumar A, Rich JJ, Moffett J, Naqvi SWA (2008) Organic carbon, and not copper, controls denitrification in oxygen minimum zones of the ocean. Deep-Sea Res. I, 55:1672–11683

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by US National Science Foundation grants to BBW and AJ. We thank Hema Naik and P. V. Narvekar for the nutrient analyses and Caroline B. Tuit for assistance with the bag incubations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. B. Ward.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jayakumar, A., O’Mullan, G.D., Naqvi, S.W.A. et al. Denitrifying Bacterial Community Composition Changes Associated with Stages of Denitrification in Oxygen Minimum Zones. Microb Ecol 58, 350–362 (2009). https://doi.org/10.1007/s00248-009-9487-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-009-9487-y

Keywords

Navigation