Skip to main content

Advertisement

Log in

Molecular Analysis of Microbiota Along the Digestive Tract of Juvenile Atlantic Salmon (Salmo salar L.)

  • Original Article
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Dominant bacterial microbiota of the gut of juvenile farmed Atlantic salmon was investigated using a combination of molecular approaches. Bacterial community composition from the stomach, the pyloric caeca, and the intestine was assessed by extracting DNA directly from each gut compartment. Temporal temperature gradient gel electrophoresis (TTGE) analysis of 16S ribosomal DNA (rDNA) amplicons showed very similar bacterial compositions throughout the digestive tract. Band sequencing revealed a narrow diversity of species with a dominance of Pseudomonas in the three compartments. However, cloning revealed more diversity among the Pseudomonas sequences. To confirm these results, we analyzed the bacterial community by amplifying the variable 16S–23S rDNA intergenic spacer region (ITS). Similar ITS profiles were observed among gastrointestinal compartments of salmon, confirming the TTGE results. Moreover, the dominant ITS band at 650 bp, identified as Pseudomonas, was observed in the ITS profile from fish collected in two seasons (July 2003 and 2004). In contrast, aerobic culture analysis revealed Shewanella spp. as the most prevalent isolate. This discrepancy was resolved by evaluating 16S rDNA and ITS polymerase chain reaction amplification efficiency from both Shewanella and Pseudomonas isolates. Very similar efficiencies were observed in the two bacteria. Hence, this discrepancy may be explained by preferential cultivation of Shewanella spp. under the experimental conditions. Also, we included analyses of pelleted feed and the water influent to explore environmental influences on the bacterial composition of the gut microbiota. Overall, these results indicate a homogeneous composition of the bacterial community composition along the gastrointestinal tract of reared juvenile salmon. This community is mainly composed of Pseudomonas spp., which could be derived from water influent and may be selectively associated with salmon in this hatchery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in-situ detection of individual microbial-cells without cultivation. Microbiol Rev 59:143–169

    PubMed  CAS  Google Scholar 

  2. Andlid T, Vazquez-Juarez R, Gustafsson L (1998) Yeasts isolated from the intestine of rainbow trout adhere to and grow in intestinal mucus. Mol Mar Biol Biotech 7:115–126

    CAS  Google Scholar 

  3. Austin B (2006) The bacterial microflora of fish, revised. ScientificWorldJournal 6:931–945

    Article  PubMed  CAS  Google Scholar 

  4. Backhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, Semenkovich CF, Gordon JI (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A 101:15718–15723

    Article  PubMed  CAS  Google Scholar 

  5. Bates J, Mittg E, Kuhlman J, Baden K, Cheesman S, Guindulain T (2006) Distinct signals from the microbiota promote different aspects of zebrafish gut differentiation. Dev Biol 297:374–386

    Article  PubMed  CAS  Google Scholar 

  6. Bergot P, Solari A, Luquet P (1975) Comparaison des surfaces absorbantes des caeca pyloriques et de l’intestin chez la truite arc-en-ciel (Salmo gairdneri Rich). Ann Hydrobiol 6:27–43

    Google Scholar 

  7. Buddington RK, Chen JW, Diamond J (1987) Genetic and phenotypic adaptation of intestinal nutrient transport to diet in fish. J Physiol 393:261–281

    PubMed  CAS  Google Scholar 

  8. Buddington RK, Diamond JM (1987) Pyloric ceca of fish: a “new” absorptive organ. Am J Physiol 252:G65–G76

    PubMed  CAS  Google Scholar 

  9. Buddington RK, Krogdahl A, BakkeMcKellep AM (1997) The intestines of carnivorous fish: structure and functions and the relations with diet. Acta Physiol Scand 161:67–80

    Google Scholar 

  10. Cahill MM (1990) Bacterial-flora of fish—a review. Microb Ecol 19:21–41

    Article  Google Scholar 

  11. Cole JR, Chai B, Farris RJ, Wang Q, Kulam SA, McGarrell DM, Garrity GM, Tiedje JM (2005) The Ribosomal Database Project (RDP-II): sequences and tools for high-throughput rRNA analysis. Nucleic Acids Res 33:D294–D296

    Article  PubMed  CAS  Google Scholar 

  12. Cole JR, Chai B, Farris RJ, Wang Q, Kulam-Syed-Mohideen AS, McGarrell DM, Bandela AM, Cardenas E, Garrity GM, Tiedje JM (2007) The ribosomal database project (RDP-II): introducing myRDP space and quality controlled public data. Nucleic Acids Res 35:D169–D172

    Article  PubMed  CAS  Google Scholar 

  13. Espejo RT, Escanilla D (1993) Detection of HIV1 DNA by a simple procedure of polymerase chain reaction, using “primer-dimer” formation as an internal control of amplification. Res Virol 144:243–246

    Article  PubMed  CAS  Google Scholar 

  14. Espejo RT, Feijoo CG, Romero J, Vasquez M (1998) PAGE analysis of the heteroduplexes formed between PCR-amplified 16S rRNA genes: estimation of sequence similarity and rDNA complexity. Microbiology 144(Pt 6):1611–1617

    PubMed  CAS  Google Scholar 

  15. Espejo RT, Romero J (1997) Bacterial community in copper sulfide ores inoculated and leached with solution from a commercial-scale copper leaching plant. Appl Environ Microbiol 63:1344–1348

    PubMed  CAS  Google Scholar 

  16. Gordon JI (2005) A genomic view of our symbiosis with members of the gut microbiota. J Pediatr Gastroenterol Nutr 40(Suppl 1):S28

    PubMed  Google Scholar 

  17. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM (2007) DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91

    Article  PubMed  CAS  Google Scholar 

  18. Griffiths S, Melville K, Cook M, Vincent S, Pierre M, Lanteigne C (2001) Profiling of bacterial species associated with haddock larviculture by PCR amplification of 16S rDNA and denaturing gradient gel electrophoresis. J Aquat Anim Health 13:355–363

    Article  Google Scholar 

  19. Hansen GH, Olafsen JA (1999) Bacterial interactions in early life stages of marine cold water fish. Microb Ecol 38:1–26

    Article  PubMed  Google Scholar 

  20. Holben WE, Williams P, Gilbert MA, Saarinen M, Sarkilahti LK, Apajalahti JH (2002) Phylogenetic analysis of intestinal microflora indicates a novel Mycoplasma phylotype in farmed and wild salmon. Microb Ecol 44:175–185

    Article  PubMed  CAS  Google Scholar 

  21. Hovda MB, Lunestad BT, Fontanillas R, Rosnes JT (2007) Molecular characterisation of the intestinal microbiota of farmed Atlantic salmon (Salmo salar L.). Aquaculture 272:581–588

    Article  CAS  Google Scholar 

  22. Jensen MA, Webster JA, Straus N (1993) Rapid identification of bacteria on the basis of polymerase chain reaction-amplified ribosomal DNA spacer polymorphisms. Appl Environ Microbiol 59:945–952

    PubMed  CAS  Google Scholar 

  23. Jensen S, Øvreås L, Bergh O, Torsvik V (2004) Phylogenetic analysis of bacterial communities associated with larvae of the Atlantic halibut propose succession from a uniform normal flora. Syst Appl Microbiol 27:728–736

    Article  PubMed  CAS  Google Scholar 

  24. Kim DH, Brunt J, Austin B (2007) Microbial diversity of intestinal contents and mucus in rainbow trout (Oncorhynchus mykiss). J Appl Microbiol 102:1654–1664

    Article  PubMed  CAS  Google Scholar 

  25. Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, Schlegel ML, Tucker TA, Schrenzel MD, Knight R, Gordon JI (2008) Evolution of mammals and their gut microbes. Science 320:1647–1651

    Article  PubMed  CAS  Google Scholar 

  26. Magne F, Abely M, Boyer F, Morville P, Pochart P, Suau A (2006) Low species diversity and high interindividual variability in faeces of preterm infants as revealed by sequences of 16S rRNA genes and PCR-temporal temperature gradient gel electrophoresis profiles. FEMS Microbiol Ecol 57:128–138

    Article  PubMed  CAS  Google Scholar 

  27. McCracken VJ, Simpson JM, Mackle RI, Gaskins HR (2001) Molecular ecological analysis of dietary and antibiotic-induced alterations of the mouse intestinal microbiota. J Nutr 131:1862–1870

    PubMed  CAS  Google Scholar 

  28. Moreno C, Romero J, Espejo RT (2002) Polymorphism in repeated 16S rRNA genes is a common property of type strains and environmental isolates of the genus Vibrio. Microbiology 148:1233–1239

    PubMed  CAS  Google Scholar 

  29. Muyzer G, Dewaal EC, Uitterlinden AG (1993) Profiling of complex microbial-populations by denaturing gradient gel-electrophoresis analysis of polymerase chain reaction-amplified genes-coding for 16S ribosomal-RNA. Appl Environ Microbiol 59:695–700

    PubMed  CAS  Google Scholar 

  30. Olafsen JA (2001) Interactions between fish larvae and bacteria in marine aquaculture. Aquaculture 200:223–247

    Article  Google Scholar 

  31. Pond MJ, Stone DM, Alderman DJ (2006) Comparison of conventional and molecular techniques to investigate the intestinal microflora of rainbow trout (Oncorhynchus mykiss). Aquaculture 261:194–203

    Article  CAS  Google Scholar 

  32. Ransom D, Lannan C, Rohovec J, Fryer J (1984) Comparison of histopathology caused by Vibrio anguillarum and Vibrio ordalii in three species of Pacific salmon. J Fish Dis 7:107–115

    Article  Google Scholar 

  33. Rawls JF, Mahowald MA, Ley RE, Gordon JI (2006) Reciprocal gut microbiota transplants from zebrafish and mice to germ-free recipients reveal host habitat selection. Cell 127:423–433

    Article  PubMed  CAS  Google Scholar 

  34. Rawls JF, Samuel BS, Gordon JI (2004) Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota. Proc Natl Acad Sci U S A 101:4596–4601

    Article  PubMed  CAS  Google Scholar 

  35. Rawls JF, Mahowald MA, Goodman AL, Trent CM, Gordon JI (2007) In vivo imaging and genetic analysis link bacterial motility and symbiosis in the zebrafish gut. Proc Natl Acad Sci U S A 104:7622–7627

    Article  PubMed  CAS  Google Scholar 

  36. Ringø E, Birkbeck T (1999) Intestinal microflora of fish larvae and fry. Aquac Res 30:73–93

    Article  Google Scholar 

  37. Ringø E, Olsen RE, Mayhew TM, Myklebust R (2003) Electron microscopy of the intestinal microflora of fish. Aquaculture 227:395–415

    Article  Google Scholar 

  38. Ringø E, Sperstad S, Myklebust R, Refstie S, Krogdahl A (2006) Characterisation of the microbiota associated with intestine of Atlantic cod (Gadus morhua L.): the effect of fish meal, standard soybean meal and a bioprocessed soybean meal. Aquaculture 261:829–841

    Article  CAS  Google Scholar 

  39. Ringø E, Strom E, Tabachek J (1995) Intestinal microflora of salmonids: a review. Aquac Res 26:773–789

    Article  Google Scholar 

  40. Romero J, Espejo R (2001) The prevalence of noncultivable bacteria in oysters (Tiostrea chilensis, Philippi, 1845). J Shellfish Res 20:1235–1240

    Google Scholar 

  41. Romero J, Garcia-Varela M, Laclette JP, Espejo RT (2002) Bacterial 16S rRNA gene analysis revealed that bacteria related to Arcobacter spp. constitute an abundant and common component of the oyster microbiota (Tiostrea chilensis). Microb Ecol 44:365–371

    Article  PubMed  CAS  Google Scholar 

  42. Romero J, Navarrete P (2006) 16S rDNA-based analysis of dominant bacterial populations associated with early life stages of coho salmon (Oncorhynchus kisutch). Microb Ecol 51:422–430

    Article  PubMed  CAS  Google Scholar 

  43. Rønnestad I, Rojas-Garcia CR, Skadal J (2000) Retrograde peristalsis; a possible mechanism for filling the pyloric caeca? J Fish Biol 56:216–218

    Article  Google Scholar 

  44. Rust M (2002) Nutritional physiology. In: Halver J, Hardy R (eds) Fish nutrition. Academic, San Diego, pp 368–446

    Google Scholar 

  45. Sonnenburg JL, Angenent LT, Gordon JI (2004) Getting a grip on things: how do communities of bacterial symbionts become established in our intestine? Nat Immunol 5:569–573

    Article  PubMed  CAS  Google Scholar 

  46. Suau A, Bonnet R, Sutren M, Godon JJ, Gibson GR, Collins MD, Dore J (1999) Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl Environ Microbiol 65:4799–4807

    PubMed  CAS  Google Scholar 

  47. Suyehiro Y (1942) A study on the digestive system and feeding habits of fish. Jpn J Zool 10:1–303

    Google Scholar 

  48. vandePeer Y, DeWachter R (1997) Construction of evolutionary distance trees with TREECON for Windows: accounting for variation in nucleotide substitution rate among sites. Comput Appl Biosci 13:227–230

    CAS  Google Scholar 

  49. Verschuere L, Rombaut G, Sorgeloos P, Verstraete W (2000) Probiotic bacteria as biological control agents in aquaculture. Microbiol Mol Biol Rev 64:655–671

    Article  PubMed  CAS  Google Scholar 

  50. von Wintzingerode F, Göbel U, Stackebrandt E (1997) Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev 21:213–229

    Article  Google Scholar 

Download references

Acknowledgments

This project was supported by a grant (FONDECYT No. 1061121) from CONICYT-Chile. P. Navarrete acknowledges a scholarship from CONICYT-Chile and Dr. Stekel a fellowship from INTA-Nestlé. Partial support was derived from an INNOVA CORFO grant (05CT6PPT-09) and FONDECYT 1080480.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Romero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Navarrete, P., Espejo, R.T. & Romero, J. Molecular Analysis of Microbiota Along the Digestive Tract of Juvenile Atlantic Salmon (Salmo salar L.). Microb Ecol 57, 550–561 (2009). https://doi.org/10.1007/s00248-008-9448-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-008-9448-x

Keywords

Navigation