Skip to main content
Log in

DGGE and T-RFLP Analysis of Bacterial Succession during Mushroom Compost Production and Sequence-aided T-RFLP Profile of Mature Compost

  • Original Article
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The amount of button mushroom (Agaricus bisporus) harvested from compost is largely affected by the microbial processes taking place during composting and the microbes inhabiting the mature compost. In this study, the microbial changes during the stages of this specific composting process were monitored, and the dominant bacteria of the mature compost were identified to reveal the microbiological background of the favorable properties of the heat-treated phase II mushroom compost. 16S ribosomal deoxyribonucleic acid (rDNA)-based denaturing gradient gel electrophoresis (DGGE) and terminal restriction fragment length polymorphism (T-RFLP) molecular fingerprinting methods were used to track the succession of microbial communities in summer and winter composting cycles. DNA from individual DGGE bands were reamplified and subjected to sequence analysis. Principal component analysis of fingerprints of the composting processes showed intensive changes in bacterial community during the 22-day procedure. Peak temperature samples grouped together and were dominated by Thermus thermophilus. Mature compost patterns were almost identical by both methods (DGGE, T-RFLP). To get an in-depth analysis of the mature compost bacterial community, the sequence data from cultivation of the bacteria and cloning of environmental 16S rDNA were uniquely coupled with the output of the environmental T-RFLP fingerprints (sequence-aided T-RFLP). This method revealed the dominance of a supposedly cellulose-degrading consortium composed of phylotypes related to Pseudoxanthomonas, Thermobifida, and Thermomonospora.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  2. Beffa T, Blanc M, Lyon PF, Vogt G, Marchiani M, Fischer JL, Aragno M (1996) Isolation of Thermus strains from hot composts (60 to 80 degrees C). Appl Environ Microbiol 62:1723–1727

    PubMed  CAS  Google Scholar 

  3. Carpenter-Boggs L, Kennedy AC, Reganold JP (1998) Use of phospholipid fatty acids and carbon source utilization patterns to track microbial community succession in developing compost. Appl Environ Microbiol 64:4062–4064

    PubMed  CAS  Google Scholar 

  4. Dees PM, Ghiorse WC (2001) Microbial diversity in hot synthetic compost as revealed by PCR-amplified rRNA sequences from cultivated isolates and extracted DNA. FEMS Microbiol Ecol 35:207–216

    Article  PubMed  CAS  Google Scholar 

  5. Eiland F, Klamer M, Lind AM, Leth M, Baath E (2001) Influence of initial C/N ratio on chemical and microbial composition during long term composting of straw. Microb Ecol 41:272–280

    PubMed  CAS  Google Scholar 

  6. Fukami TBT, Bezemer TM, Mortimer SR, van der Putten WH (2005) Species divergence and trait convergence in experimental plant community assembly. Ecol Lett 8:1283–1290

    Article  Google Scholar 

  7. George SP, Ahmad A, Rao MB (2001) A novel thermostable xylanase from Thermomonospora sp.: influence of additives on thermostability. Bioresour Technol 78:221–224

    Article  PubMed  CAS  Google Scholar 

  8. Gerrits JPG (1988) Nutrition and compost. In: van Griensven LJLD (ed) The cultivation of mushrooms (first English edition). Darlington Mushroom Laboratories, Rustington, UK, pp 29–72

    Google Scholar 

  9. Haruta S, Cui Z, Huang Z, Li M, Ishii M, Igarashi Y (2002) Construction of a stable microbial community with high cellulose-degradation ability. Appl Microbiol Biotechnol 59:529–534

    Article  PubMed  CAS  Google Scholar 

  10. Hellmann B, Zelles L, Palojarvi A, Bai Q (1997) Emission of climate-relevant trace gases and succession of microbial communities during open-windrow composting. Appl Environ Microbiol 63:1011–1018

    PubMed  CAS  Google Scholar 

  11. Herrmann RF, Shann JF (1997) Microbial community changes during the composting of municipal solid waste. Microb Ecol 33:78–85

    Article  PubMed  Google Scholar 

  12. Heuer H, Krsek M, Baker P, Smalla K, Wellington EM (1997) Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl Environ Microbiol 63:3233–3241

    PubMed  CAS  Google Scholar 

  13. Horz HP, Rotthauwe JH, Lukow T, Liesack W (2000) Identification of major subgroups of ammonia-oxidizing bacteria in environmental samples by T-RFLP analysis of amoA PCR products. J Microbiol Methods 39:197–204

    Article  PubMed  CAS  Google Scholar 

  14. Hugenholtz P, Goebel BM, Pace NR (1998) Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180:4765–4774

    PubMed  CAS  Google Scholar 

  15. Juteau P, Larocque R, Rho D, LeDuy A (1999) Analysis of the relative abundance of different types of bacteria capable of toluene degradation in a compost biofilter. Appl Microbiol Biotechnol 52:863–868

    Article  PubMed  CAS  Google Scholar 

  16. Kato S, Haruta S, Cui ZJ, Ishii M, Igarashi Y (2005) Stable coexistence of five bacterial strains as a cellulose-degrading community. Appl Environ Microbiol 71:7099–7106

    Article  PubMed  CAS  Google Scholar 

  17. Kukolya J, Nagy I, Laday M, Toth E, Oravecz O, Marialigeti K, Hornok L (2002) Thermobifida cellulolytica sp. nov., a novel lignocellulose-decomposing actinomycete. Int J Syst Evol Microbiol 52:1193–1199

    Article  PubMed  CAS  Google Scholar 

  18. LaMontagne MG, Michel FC Jr, Holden PA, Reddy CA (2002) Evaluation of extraction and purification methods for obtaining PCR-amplifiable DNA from compost for microbial community analysis. J Microbiol Methods 49:255–264

    Article  PubMed  CAS  Google Scholar 

  19. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acids techniques in bacterial systematics. Wiley, New York, pp 115–175

    Google Scholar 

  20. Lyon PF, Beffa T, Blanc M, Auling G, Aragno M (2000) Isolation and characterization of highly thermophilic xylanolytic Thermus thermophilus strains from hot composts. Can J Microbiol 46:1029–1035

    Article  PubMed  CAS  Google Scholar 

  21. Moeseneder MM, Arrieta JM, Muyzer G, Winter C, Herndl GJ (1999) Optimization of terminal-restriction fragment length polymorphism analysis for complex marine bacterioplankton communities and comparison with denaturing gradient gel electrophoresis. Appl Environ Microbiol 65:3518–3525

    PubMed  CAS  Google Scholar 

  22. Narihiro T, Abe T, Yamanaka Y, Hiraishi A (2004) Microbial population dynamics during fed-batch operation of commercially available garbage composters. Appl Microbiol Biotechnol 65:488–495

    Article  PubMed  CAS  Google Scholar 

  23. Nikolausz M, Sipos R, Revesz S, Szekely A, Marialigeti K (2005) Observation of bias associated with re-amplification of DNA isolated from denaturing gradient gels. FEMS Microbiol Lett 244:385–390

    Article  PubMed  CAS  Google Scholar 

  24. Ntougias S, Zervakis GI, Kavroulakis N, Ehaliotis C, Papadopoulou KK (2004) Bacterial diversity in spent mushroom compost assessed by amplified rDNA restriction analysis and sequencing of cultivated isolates. Syst Appl Microbiol 27:746–754

    Article  PubMed  CAS  Google Scholar 

  25. Nunan N, Daniell TJ, Singh BK, Papert A, McNicol JW, Prosser JI (2005) Links between plant and rhizoplane bacterial communities in grassland soils, characterized using molecular techniques. Appl Environ Microbiol 71:6784–6792

    Article  PubMed  CAS  Google Scholar 

  26. Peters S, Koschinsky S, Schwieger F, Tebbe CC (2000) Succession of microbial communities during hot composting as detected by PCR-single-strand-conformation polymorphism-based genetic profiles of small-subunit rRNA genes. Appl Environ Microbiol 66:930–936

    Article  PubMed  CAS  Google Scholar 

  27. Polz MF, Cavanaugh CM (1998) Bias in template-to-product ratios in multitemplate PCR. Appl Environ Microbiol 64:3724–3730

    PubMed  CAS  Google Scholar 

  28. Ravenschlag K, Sahm K, Pernthaler J, Amann R (1999) High bacterial diversity in permanently cold marine sediments. Appl Environ Microbiol 65:3982–3989

    PubMed  CAS  Google Scholar 

  29. Sanchez JI, Rossetti L, Martinez B, Rodriguez A, Giraffa G (2006) Application of reverse transcriptase PCR-based T-RFLP to perform semi-quantitative analysis of metabolically active bacteria in dairy fermentations. J Microbiol Methods 65:268–277

    Article  PubMed  CAS  Google Scholar 

  30. Schloss PD, Hay AG, Wilson DB, Gossett JM, Walker LP (2005) Quantifying bacterial population dynamics in compost using 16S rRNA gene probes. Appl Microbiol Biotechnol 66:457–463

    Article  PubMed  CAS  Google Scholar 

  31. Sharma S, Rangger A, Insam H (1998) Effects of decomposing maize litter on community level physiological profiles of soil bacteria. Microb Ecol 35:301–310

    Article  PubMed  CAS  Google Scholar 

  32. Sipos R, Szekely AJ, Palatinszky M, Revesz S, Marialigeti K, Nikolausz M (2007) Effect of primer mismatch, annealing temperature and PCR cycle number on 16S rRNA gene-targetting bacterial community analysis. FEMS Microbiol Ecol 60:341–350

    Article  PubMed  CAS  Google Scholar 

  33. Smith CJ, Danilowicz BS, Clear AK, Costello FJ, Wilson B, Meijer WG (2005) T-Align, a web-based tool for comparison of multiple terminal restriction fragment length polymorphism profiles. FEMS Microbiol Ecol 54:375–380

    Article  PubMed  CAS  Google Scholar 

  34. Straatsma G, Olijnsma TW, Gerrits JP, Amsing JG, Op Den Camp HJ, Van Griensven LJ (1994) Inoculation of Scytalidium thermophilum in button mushroom compost and its effect on yield. Appl Environ Microbiol 60:3049–3054

    PubMed  Google Scholar 

  35. Strom PF (1985) Identification of thermophilic bacteria in solid-waste composting. Appl Environ Microbiol 50:906–913

    PubMed  CAS  Google Scholar 

  36. Suihko ML, Sinkko H, Partanen L, Mattila-Sandholm T, Salkinoja-Salonen M, Raaska L (2004) Description of heterotrophic bacteria occurring in paper mills and paper products. J Appl Microbiol 97:1228–1235

    Article  PubMed  CAS  Google Scholar 

  37. Takaku H, Kodaira S, Kimoto A, Nashimoto M, Takagi M (2006) Microbial communities in the garbage composting with rice hull as an amendment revealed by culture-dependent and -independent approaches. J Biosci Bioeng 101:42–50

    Article  PubMed  CAS  Google Scholar 

  38. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  39. Tiquia SM, Michel FC Jr (2002) Bacterial diversity in livestock manure composts as characterized by terminal restriction fragment lenght polymorphisms (T-RFLP) of PCR-amplified 16S rRNA gene sequences. In: Insam H, Riddech N, Klammer S (eds) Microbiology of composting. Springer, Berlin, pp 65–82

    Google Scholar 

  40. Tuomela M, Vikman M, Hatakka A, Itavaara M (2000) Biodegradation of lignin in a compost environment: a review. Bioresour Technol 72:169–183

    Article  CAS  Google Scholar 

  41. von Wintzingerode F, Gobel UB, Stackebrandt E (1997) Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev 21:213–229

    Article  Google Scholar 

  42. Wang CM, Shyu CL, Ho SP, Chiou SH (2007) Species diversity and substrate utilization patterns of thermophilic bacterial communities in hot aerobic poultry and cattle manure composts. Microb Ecol 54:1–9

    Article  PubMed  Google Scholar 

  43. Weidler GW, Dornmayr-Pfaffenhuemer M, Gerbl FW, Heinen W, Stan-Lotter H (2007) Communities of archaea and bacteria in a subsurface radioactive thermal spring in the Austrian Central Alps, and evidence of ammonia-oxidizing Crenarchaeota. Appl Environ Microbiol 73:259–270

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are thankful to the staff of Quality Champignons, Korona Spawn Factory, and Mr. László Bujdosó for sampling and operating the compost system. This work was supported by grant BIO 0029/2002 from the Ministry of Agriculture and Rural Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna J. Székely.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Székely, A.J., Sipos, R., Berta, B. et al. DGGE and T-RFLP Analysis of Bacterial Succession during Mushroom Compost Production and Sequence-aided T-RFLP Profile of Mature Compost. Microb Ecol 57, 522–533 (2009). https://doi.org/10.1007/s00248-008-9424-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-008-9424-5

Keywords

Navigation