Skip to main content
Log in

Epizoic Communities of Prokaryotes on Healthy and Diseased Scleractinian Corals in Lingayen Gulf, Philippines

  • Original Article
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

In search for microbiological indicators of coral health and coral diseases, community profiles of coral-associated epizoic prokaryotes were investigated because of their dual potential as a source of coral pathogens and their antagonists. In pairwise samples of visually healthy and diseased coral specimens from Bolinao Bay (Pangasinan, Philippines), mixed biofilm communities of ectoderm- and mucus-colonizing epizoic prokaryotes were compared using fluorescent in situ hybridization (FISH). Oligonucleotide probes targeted 13 phylotypes representing the main taxonomic groups of marine prokaryotes. Coral taxa tended to show specific community profiles. An attempt to separate the profiles of healthy and diseased specimens by applying principal component analysis (PCA) to a (nonselective) collection of corals (affected by various diseases) proved unsuccessful. On the other hand, separate PCA clusters were obtained from healthy and diseased corals belonging to a single species (Pocillopora damicornis) only. This cluster formation was dominated by principal component 1 with the genus Vibrio accounting for 18%. At the same time, reef-site-specific clusters were formed as well. At a reef site exposed to pollution from intensive fish cage (Chanos chanos) farming, healthy P. damicornis were mainly (93%) colonized by unicellular cyanobacteria. The formal calculation of diversity parameters suggested that evenness in particular was driven by both health status and reef site location. Despite the low resolution of taxonomic levels achieved with FISH probes targeting only large phylotype groups, significant differences between healthy and diseased corals and also between polluted and nonpolluted reef sites were observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Ainsworth TD, Fine M, Blackall LL, Hoegh-Guldberg O (2006) Fluorescence in situ hybridization and spectral imaging of coral-associated bacterial communities. Appl Environ Microbiol 72:3016–3020

    Article  PubMed  CAS  Google Scholar 

  2. Amann R, Ludwig W, Schleifer K (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microb Rev 59:143–169

    CAS  Google Scholar 

  3. Ben-Haim Y, Thompson FL, Thompson CC, Cnockaert MC, Hoste B, Swings J, Rosenberg E (2003a) Vibrio coralliilyticus sp nov., a temperature dependent pathogen of the coral Pocillopora damicornis. Int J Syst Evol Microbiol 53:309–315

    Article  PubMed  CAS  Google Scholar 

  4. Ben-Haim Y, Zicherman-Keren M, Rosenberg E (2003b) Temperature related bleaching and lysis of the coral Pocillopora damicornis by the novel pathogen Vibrio coralliilyticus. Appl Environ Microbiol 69:4236–4242

    Article  PubMed  CAS  Google Scholar 

  5. Bourne D, Munn C (2005) Diversity of bacteria associated with the coral Pocillopora damicornis from the Great Barrier Reef. Environ Microbiol 7:1162–1174

    Article  PubMed  CAS  Google Scholar 

  6. Bruno JF, Selig ER (2007) Regional decline of coral cover in the Indo-Pacific: timing, extent, and subregional comparisons. PLoS Biology 2:e711 DOI 10.1371/journal.pone.0000711

    Google Scholar 

  7. Cervino JM, Hayes RL, Polson PW, Polson SC, Goreau TJ, Martinez RJ, Smith GW (2004) Relationship of Vibrio species infection and elevated temperature to yellow blotch/band disease in Caribbean corals. Appl Environ Microbiol 70:6855–6864

    Article  PubMed  CAS  Google Scholar 

  8. Cooney R, Pantos O, Le Tassier MDA, Barer MR, O’Donnell AG, Bythell JC (2002) Characterization of the bacterial consortium associated with black band disease in coral using molecular microbiological techniques. Environ Microbiol 4:401–413

    Article  PubMed  Google Scholar 

  9. Das S, Lyla PS, Khan SA (2006) Marine microbial diversity and ecology: importance and future perspectives. Current Science 90:1325–1335

    CAS  Google Scholar 

  10. Denner E, Smith G, Busse H, Schumann P, Narzt T, Polson SW, Lubitz W, Richardson L (2003) Aurantimonas coralicida gen nov sp nov, the causative agent of white plague type II in Caribbean scleractinian corals. Int J Sys Evol Microbiol 53:1115–1122

    Article  CAS  Google Scholar 

  11. Dove SG, Hoegh-Guldberg O, Rangananthan S (2001) Major colour patterns of reef-building corals are due to a family of GFP-like proteins. Coral Reefs 19:197–204

    Article  Google Scholar 

  12. Ducklow HW, Mitchell M (1979) Composition of mucus released by coral reef coelenterates. Limnol Oceanogr 24:706–714

    Article  CAS  Google Scholar 

  13. Fine M, Loya Y (2004) Coral bleaching in a temperate sea: from colony physiology to population ecology. In: Rosenberg E, Loya Y (eds) Coral health and disease. Springer, Berlin, pp 143–156

    Google Scholar 

  14. Frias-Lopez J, Zerkle A, Bonheyo G, Fouke W (2002) Partitioning of bacterial communities between seawater and healthy, black band diseased, and dead coral surfaces. Appl Environ Microbiol 68:2214–2228

    Article  PubMed  CAS  Google Scholar 

  15. Gil-Agudelo DL, Myers C, Smith GW, Kim K (2006) Changes in the microbial communities associated with Gorgonia ventalina during aspergillosis infection. Dis Aquat Org 69:89–94

    Article  PubMed  Google Scholar 

  16. Giovannoni S, Rappe M (2000) Evolution, diversity, and molecular ecology of marine prokaryotes. In: Kirchman DL (ed) Microbial ecology of the oceans. Wiley-Liss, New York, pp 47–84

    Google Scholar 

  17. Harvell D, Aronson R, Baron N, Connell J, Dobson A, Ellner S, Gerber L, Kim K, Kuris A, McCallum H, Lafferty K, McKay B, Porter J, Pascual M, Smith G, Sutherland K, Ward J (2004) The rising tide of ocean diseases: unsolved problems and research priorities. Front Ecol Environ 2:375–382

    Article  Google Scholar 

  18. Hoegh-Guldberg O (2004) Coral reefs and projections of future change. In: Rosenberg E, Loya Y (eds) Coral health and disease. Springer, Berlin, pp 463–484

    Google Scholar 

  19. Jokiel PL (2004) Temperature stress and coral bleaching. In: Rosenberg E, Loya Y (eds) Coral health and disease. Springer, Berlin, pp 401–426

    Google Scholar 

  20. Kellogg C (2004) Tropical Archaea: diversity associated with the surface microlayer of corals. Mar Ecol Prog Ser 273:81–88

    Article  CAS  Google Scholar 

  21. Klaus JS, Janse I, Heikoop JM, Sandford RA, Fouke BW (2007) Coral microbial communities, zooxanthellae and mucus along gradients of seawater depth and coastal pollution. Environ Microbiol 9:1291–1305

    Article  PubMed  CAS  Google Scholar 

  22. Kobayashi M, Ishizuka T, Katayama M, Kanehisa M, Bhattacharyya-Pakrasi M, Pakrasi HB, Ikeuchi M (2004) Response to oxidative stress involves a novel peroxiredoxin gene in the unicellular cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol 45:290–299

    Article  PubMed  CAS  Google Scholar 

  23. Kooperman N, Ben-Dov E, Kramarsky-Winter E, Barak Z, Kushmaro A (2007) Coral mucus-associated bacterial communities from natural and aquarium environments. FEMS Microbiol Lett 276:106–113

    Article  PubMed  CAS  Google Scholar 

  24. Koren O, Rosenberg E (2006) Bacteria associated with mucus and tissues of the coral Oculina patagonica in summer and winter. Appl Environ Microbiol 72:5254–5259

    Article  PubMed  CAS  Google Scholar 

  25. Kushmaro A, Banin E, Loya Y, Stackebrandt E, Rosenberg E (2001) Vibrio shiloi sp nov, the causative agent of bleaching of the coral Oculina patagonica. Int J Syst Evol Microbiol 51:1383–1388

    PubMed  CAS  Google Scholar 

  26. Lafti A, Jeanjean R, Lemeille S, Havaux M, Zhang C-C (2005) Iron starvation leads to oxidative stress in Anabaena sp. strain PCC 7120. J Bacteriol 187:6596–6598

    Article  CAS  Google Scholar 

  27. Lesser M, Mazel C, Gurbunov M, Falkowski PG (2004) Discovery of symbiotic nitrogen-fixing cyanobacteria in corals. Science 305:997–1000

    Article  PubMed  CAS  Google Scholar 

  28. Loya Y (2004) The coral reefs of Eilat—past, present, future: three decades of coral community structure studies. In: Rosenberg E, Loya Y (eds) Coral health and disease. Springer, Berlin, pp 1–34

    Google Scholar 

  29. Pantos O, Bythell JC (2006) Bacterial community structure associated with white band disease in the elkhorn coral Acropora palmata determined using culture-independent 16S rRNA techniques. Dis Aquat Org 69:79–88

    Article  PubMed  CAS  Google Scholar 

  30. Pantos O, Cooney R, Le Tissler MDA, Barer MR, O’Donnell AG, Bythell JC (2003) The bacterial ecology of a plague-like disease affecting the Caribbean coral Montastrea annularis. Environ Microbiol 5:370–382

    Article  PubMed  CAS  Google Scholar 

  31. Patterson KL, Porter JW, Ritchie KB, Polson SW, Mueller E, Peters EC, Santavy DL, Smith GW (2002) The etiology of white pox, a lethal disease of the Caribbean elkhorn coral, Acropora palmata. Proc Natl Acad Sci U S A 99:8725–8730

    Article  PubMed  CAS  Google Scholar 

  32. Pernthaler J, Glockner FO, Schoenhuber W, Amann R (2001) Fluorescence in situ hybridization (FISH) with rRNA-targeted oligonucleotide probes. Methods Microbiol 30:207–226

    Article  CAS  Google Scholar 

  33. Raymundo L, Rosell K, Reboton C, Kaczmarsky L (2005) Coral diseases on Philippine reefs: genus Porites is a dominant host. Dis Aquat Org 64:181–191

    Article  PubMed  Google Scholar 

  34. Reshef L, Koren O, Loya Y, Zilber-Rosenberg I, Rosenberg E (2006) The coral probiotic hypothesis. Environ Microbiol 8:2068–2073

    Article  PubMed  CAS  Google Scholar 

  35. Ritchie KB (2006) Regulation of microbial populations by coral surface mucus and mucus associated bacteria. Mar Ecol Prog Ser 322:1–14

    Article  CAS  Google Scholar 

  36. Ritchie KB, Smith GW (1995) Preferential carbon utilization by surface bacterial communities from water mass, normal, and white-band diseased Acropora cervicornis. Mol Mar Biol 4:345–352

    CAS  Google Scholar 

  37. Rohwer F, Breitbart M, Jara J, Azam F, Knowlton N (2001) Diversity of bacteria associated with the Caribbean coral Montastrea franksi. Coral Reefs 20:85–91

    Article  Google Scholar 

  38. Rohwer F, Seguritan V, Azam F, Knowlton N (2002) Diversity and distribution of coral associated bacteria. Mar Ecol Prog Ser 243:1–10

    Article  Google Scholar 

  39. Rosenberg E, Ben-Haim Y (2002) Microbial diseases of corals and global warming. Environ Microbiol 4:318–328

    Article  PubMed  Google Scholar 

  40. Rosenberg E, Koren O, Reshef L, Efrony R, Zilber-Rosenberg I (2007) The role of microorganisms in coral health, disease and evolution. Nature Rev Microbiol 5:355–361

    Article  CAS  Google Scholar 

  41. Santiago-Vasquez LZ, Bruck TB, Bruck WM, Duque-Alarcon AP, McCarthy PJ, Kerr RG (2007) The diversity of the bacterial communities associated with the azooxanthellate hexacoral Cirrhipathes lutkeni. ISME J 1:654–659

    Article  Google Scholar 

  42. Sekar R, Mills DK, Remily ER, Voss JD, Richardson LL (2006) Microbial communities in the surface mucopolysaccharide layer and the black band microbial mat of black band-diseased Siderastrea siderea. Appl Environ Microbiol 72:5963–5973

    Article  PubMed  CAS  Google Scholar 

  43. Snaidr J, Amann R, Huber I, Ludwig W, Schleifer K-H (1997) Phylogenetic analysis and in situ identification of bacteria in activated sludge. Appl Environ Microbiol 63:2884–2896

    PubMed  CAS  Google Scholar 

  44. Sutherland K, Porter J, Torres C (2004) Disease and immunity in Caribbean and Indo-Pacific zooxanthellae corals. Mar Ecol Prog Ser 266:273–302

    Article  Google Scholar 

  45. Suzuki M, Sherr E, Sherr B (1993) DAPI direct counting underestimates bacterial abundances and average cell size compared to AO direct counting. Limnol Oceanogr 38:1566–1570

    Google Scholar 

  46. Trousselier M, Legendre P (1981) A functional evenness index for microbial ecology. Microb Ecol 7:283–296

    Article  Google Scholar 

  47. Wagner N, Horny M, Daims H (2003) Fluorescence in situ hybridisation for the identification and characterisation of prokaryotes. Curr Opin Microbiol 6:302–309

    Article  PubMed  CAS  Google Scholar 

  48. Webster N, Bourne D (2007) Bacterial community structure associated with the Antarctic soft coral, Alcyonium antarcticum. FEMS Microbiol Ecol 59:81–94

    Article  PubMed  CAS  Google Scholar 

  49. Wegley L, Yu Y, Breitbart M, Casas V, Kline DI, Rohwer F (2004) Coral associated Archaea. Mar Ecol Prog Ser 273:89–96

    Article  CAS  Google Scholar 

  50. Yang X, Shimizu Y, Steiner JR, Clardy J (1993) Nostoclides I and II, extracellular metabolism from a symbiotic cyanobacterium, Nostoc sp. Tetrahedron Lett 34:761–764

    Article  CAS  Google Scholar 

  51. Zak JC, Willig MR, Moorhead DL, Wildman HG (1994) Functional diversity of microbial communities: a quantitative approach. Soil Biol Biochem 26:1101–1108

    Article  Google Scholar 

  52. Zhu J, Miller MB, Vance RE, Dziejman M, Bassler BL, Mekalanos JJ (2002) Quorum-sensing regulators control virulence gene expression in Vibrio cholerae. Proc Natl Acad Sci U S A 99:3129–3134

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Authors thank H.P. Grossart for an introduction to the FISH technique and H Dries for her help in collecting samples from corals in situ. This investigation was supported by a Center of Excellence grant to W.R. in the framework of an international GEF/World Bank funded Coral Reef Project, as well as support from DAAD (German Academic Exchange Service) to W.R. and H.P.G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Arboleda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arboleda, M., Reichardt, W. Epizoic Communities of Prokaryotes on Healthy and Diseased Scleractinian Corals in Lingayen Gulf, Philippines. Microb Ecol 57, 117–128 (2009). https://doi.org/10.1007/s00248-008-9400-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-008-9400-0

Keywords

Navigation