Microbial Ecology

, Volume 56, Issue 3, pp 513–524 | Cite as

Population Evidence of Cryptic Species and Geographical Structure in the Cosmopolitan Ectomycorrhizal Fungus, Tricholoma scalpturatum

  • Fabian Carriconde
  • Monique Gardes
  • Patricia Jargeat
  • Jacob Heilmann-Clausen
  • Bello Mouhamadou
  • Hervé Gryta
Original Article

Abstract

Tricholoma scalpturatum is an ectomycorrhizal fungus that forms symbioses with roots of diverse trees and shrubs. It is commonly encountered in a wide range of habitats, across temperate ecosystems. A previous study has revealed a high genetic diversity at a local scale, and ruderal abilities. To examine genetic structure at a large geographical scale, a total of 164 basidiocarps were collected from 30 populations located in Western Europe, from Spain to Scandinavia. These samples were analyzed by three molecular methods with different levels of resolution: inter-simple sequence repeats (ISSRs), restriction fragment length polymorphisms (RFLPs) in the rDNA internal transcribed spacer (ITS), and ITS sequence analysis. Considerable genetic variation was found, and the morphospecies was separated into two genetic groups that were distinct from each other. The ISSR data and the relatively low percentage value (96%) of shared sequence polymorphisms in the ITS between isolates from the two groups, strongly suggest cryptic species and long-lasting separation. No geographical exclusion was detected for these two widely distributed taxa. However, high estimates of population differentiation were observed in each group, including between populations less than a few kilometers apart. This result provides evidence for limited gene flow and/or founding effects. It also indicates that T. scalpturatum does not constitute a random mating population, and the hypothesis of endemism cannot be excluded for this cosmopolitan wind-dispersed fungus.

References

  1. 1.
    Anderson MJ (2003) PCO: a FORTRAN computer program for principal coordinate analysis. Department of Statistics, University of Auckland, New ZealandGoogle Scholar
  2. 2.
    Bergemann SE, Miller SL (2002) Size, distribution, and persistence of genets in local populations of the late stage ectomycorrhizal basidiomycete, Russula brevipes. New Phytol 156:313–320CrossRefGoogle Scholar
  3. 3.
    Bidartondo M, Gardes M (2005) Fungal diversity in molecular terms: profiling, identification, and quantification in the environment. In: Dighton J, White TF, Oudemans P (eds) The Fungal Community, 3rd edn. CRC Press, Boca Raton, pp 215–239Google Scholar
  4. 4.
    Bon M (1984) Les Tricholomes de France et de l’Europe Occidentale. Lechevalier edn., ParisGoogle Scholar
  5. 5.
    Bruns TD, White TJ, Taylor JW (1991) Fungal molecular systematics. Annu Rev Ecol Evol Syst 22:525–564CrossRefGoogle Scholar
  6. 6.
    Burnett J (2003) Fungal population and species. Oxford University Press, Oxford, UKGoogle Scholar
  7. 7.
    Cho J-C, Tiedje JM (2000) Biogeography and degree of endemicity of fluorescent Pseudomonas strains in soil. Appl Environ Microbiol 60:1227–1234Google Scholar
  8. 8.
    Christensen M, Noordeloos ME (1999) Notulae ad floram agaricinam neerlandicam-XXXVI Tricholoma. Persoonia 17:295–317Google Scholar
  9. 9.
    Dettman JR, Jacobson DJ, Taylor JW (2003) A multilocus genealogical approach to phylogenetic species recognition in the model Eukaryote Neurospora. Evolution 57:2703–2720PubMedGoogle Scholar
  10. 10.
    Douhan GW, Rizzo DM (2005) Phylogenetic divergence in a local population of the ectomycorrhizal fungus Cenococcum geophilum. New Phytol 166:263–271PubMedCrossRefGoogle Scholar
  11. 11.
    Dunham SM, Kretzer A, Pfrender ME (2003) Characterization of pacific golden chanterelle (Cantharellus formosus) genet size using co-dominant microsatellite markers. Mol Ecol 12:1607–1618PubMedCrossRefGoogle Scholar
  12. 12.
    Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491PubMedGoogle Scholar
  13. 13.
    Finlay BJ (2002) Global dispersal of free-living microbial eukaryote species. Science 296:1061PubMedCrossRefGoogle Scholar
  14. 14.
    Finlay BJ, Clarke KJ (1999) Ubiquitous dispersal of microbial species. Nature 400:828CrossRefGoogle Scholar
  15. 15.
    Fisher MC, Koenig GL, White TJ, San-Blas G, Negroni R, Gutierrez Alvarez I, Wanke B, Taylor JW (2001) Biogeographic range expansion into South America by Coccidioides immitis mirror new world patterns of human migration. Proc Natl Acad Sci USA 98:4558–4562PubMedCrossRefGoogle Scholar
  16. 16.
    Garcia-Pichel F, Prufert-Bedout L, Muyer G (1996) Phenotypic and phylogenetic analyses show Microcoleus chthonoplastes to be a cosmopolitan cyanobacterium. Appl Environ Microbiol 62:3284–3291PubMedGoogle Scholar
  17. 17.
    Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118PubMedCrossRefGoogle Scholar
  18. 18.
    Grubisha LC, Bergemann SE, Bruns TD (2007) Host islands within the California Northern Channel Islands create fine-scale genetic structure in the two sympatric species of the symbiotic ectomycorrhizal fungus Rhizopogon. Mol Ecol 16:1811–1822PubMedCrossRefGoogle Scholar
  19. 19.
    Gryta H, Carriconde F, Charcosset J-Y, Jargeat P, Gardes M (2006) Population dynamics of the ectomycorrhizal fungal species Tricholoma populinum and Tricholoma scalpturatum associated with black poplar under differing environmental conditions. Environ Microbiol 8:773–786PubMedCrossRefGoogle Scholar
  20. 20.
    Hall TA (1999) BioEdit software, version 5.0.9. North Carolina State University, Raleigh, NCGoogle Scholar
  21. 21.
    Hantula J, Dusabenygasani M, Hamelin RC (1996) Random amplified microsatellites (RAMS)—a novel method for characterizing genetic variation within fungi. Eur J For Path 26:159–166CrossRefGoogle Scholar
  22. 22.
    Hawksworth DL (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res 105:1422–1432CrossRefGoogle Scholar
  23. 23.
    Horton TR, Bruns TD (2001) The molecular revolution in ectomycorrhizal ecology: peeking into the black-box. Mol Ecol 10:1855–1871PubMedCrossRefGoogle Scholar
  24. 24.
    Izzo A, Agbowo J, Bruns TD (2005) Detection of plot-level changes in ectomycorrhizal communities across years in a old-growth mixed-conifer forest. New Phytol 166:619–630PubMedCrossRefGoogle Scholar
  25. 25.
    Jacobson DJ, Dettman JR, Adams RI, Boesl C, Sultana S, Roenneberg T, Merrow M, Duarte M, Marques I, Ushakova A, Carneiro P, Videira A, Navarro-Sampedro L, Olmedo M, Corrochano LM, Taylor JW (2006) New findings of Neurospora in Europe and comparisons of diversity in temperate climates on continental scales. Mycologia 98:550–559PubMedCrossRefGoogle Scholar
  26. 26.
    James TY, Porter D, Hamrick JL, Vilgalys R (1999) Evidence for limited intercontinental gene flow in the cosmopolitan mushroom, Schizophyllum commune. Evolution 53:1665–1667CrossRefGoogle Scholar
  27. 27.
    Kasuga T, White TJ, Koenig G, Mcewen J, Restrepo A, Castaneda E, Da Silva Lacaz C, Heins-Vaccari EM, De Freitas R, Zancopé-Oliviera RM, Qin Z, Negroni R, Carter DA, Mikami Y, Tamura M, Taylor ML, Miller GF, Poonwan N, Taylor JW (2003) Phylogeography of the fungal pathogen Histoplasma capsulatum. Mol Ecol 12:3383–3401PubMedCrossRefGoogle Scholar
  28. 28.
    Kauserud H, Stensrud Ø, DeCock C, Shalchian-Tabrizi K, Schumacher T (2006) Multiple gene genealogies and AFLPs suggest cryptic speciation and long-distance dispersal in the basidiomycete Serpula himantioides (Boletales). Mol Ecol 15:421–431PubMedCrossRefGoogle Scholar
  29. 29.
    Kõljalg U, Larsson K-H, Abarenkov K, Nilsson RH, Alexander IJ, Eberhardt U, Erland S, Høiland K, Kjøller R, Larsson E, Pennanen T, Sen R, Taylor AFS, Tedersoo L, Vrålstad T, Ursing BM (2005) UNITE: a database providing web-based methods for the molecular identification of ectomycorrhizal fungi. New Phytol 166:1063–1068PubMedCrossRefGoogle Scholar
  30. 30.
    Koufopanou V, Burt A, Szaro T, Taylor JW (2001) Gene genealogies, cryptic species, and molecular evolution in the human pathogen Coccidioides immitis and relatives (Ascomycota, Onygenales). Mol Biol Evol 18:1246–1258PubMedGoogle Scholar
  31. 31.
    Mantel NA (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  32. 32.
    Martin F, Delaruelle C, Ivory M (1998) Genetic variability in intergenic spacers of ribosomal DNA in Pisolithus isolates associated with pine, eucalyptus and Aflezia in lowland Kenyan forests. New Phytol 139:341–352CrossRefGoogle Scholar
  33. 33.
    Martin F, Dìez J, Dell B, Delaruelle C (2002) Phylogeography of the ectomycorrhizal Pisolithus species as inferred from nuclear ribosomal DNA ITS sequences. New Phytol 153:345–357CrossRefGoogle Scholar
  34. 34.
    Murat C, Diez LP, Delaruelle C, Dupré C, Chevalier G, Bonfante P, Martin F (2004) Polymorphism at the ribosomal DNA ITS and its relation to postglacial re-colonization of the Perigord truffle Tuber melanosporum. New Phytol 164:401–411CrossRefGoogle Scholar
  35. 35.
    Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273PubMedCrossRefGoogle Scholar
  36. 36.
    Ovrebo CL (1989) Tricholoma, subgenus Tricholoma, section Albidogrisea: North American species found principally in the Great Lakes region. Can J Bot 67:3134–3152Google Scholar
  37. 37.
    Pringle A, Baker DM, Platt JL, Wares JP, Latgé JP, Taylor JW (2005) Cryptic speciation in the cosmopolitan and clonal human pathogenic fungus Aspergillus fumigatus. Evolution 59:1886–1899PubMedGoogle Scholar
  38. 38.
    Rubini A, Paolocci F, Riccioni C, Vendramin GG, Arcioni S (2005) Genetic and phylogeographic structures of the symbiotic fungus Tuber magnatum. Appl Environ Microb 71:6584–6589CrossRefGoogle Scholar
  39. 39.
    Schneider S, Roessli D, Excoffier L (2000) ARLEQUIN ver 2.000. A software for population genetics data analysis. URL: http:/anthro.unige.ch/arlequin
  40. 40.
    Smith ME, Douhan GW, Rizzo DM (2007) Ectomycorrhizal community structure in a xeric Quercus woodland based on rDNA sequence analysis of sporocarps and pooled roots. New Phytol 174:847–863PubMedCrossRefGoogle Scholar
  41. 41.
    Taylor JW, Jacobson DJ, Kroken S, Kasuga T, Geiser DM, Hibbett DS, Fisher MC (2000) Phylogenetic species recognition and species concepts in fungi. Fungal Genet Biol 31:21–32PubMedCrossRefGoogle Scholar
  42. 42.
    Tedersoo L, Kõljalg U, Hallenberg N, Larsson K-H (2003) Fine scale distribution of ectomycorrhizal fungi and roots across substrate layers including coarse woody debris in a mixed forest. New Phytol 159:153–165CrossRefGoogle Scholar
  43. 43.
    Thioulouse J, Chessel D, Dolédec S, Olivier J-M (1997) ADE-4: a multivariable analysis and graphical display software. Stat Comput 7:75–83CrossRefGoogle Scholar
  44. 44.
    Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882CrossRefGoogle Scholar
  45. 45.
    Tsui CKM, Sivichai S, Berbee ML (2006) Molecular systematics of Helicoma, Helicomyces and Helicosporium and their teleomorphs inferred from rDNA sequences. Mycologia 98:94–104PubMedCrossRefGoogle Scholar
  46. 46.
    Turner B (1987) Two ecotypes of Neurospora intermedia. Mycologia 79:425–432CrossRefGoogle Scholar
  47. 47.
    Van de Peer Y, De Wachter R (1994) TREECON for windows: a software package for construction and drawing of evolutionary trees for Microsoft Windows environment. Comp Appl Bio sci 10:569–570Google Scholar
  48. 48.
    Viviani MA, Cogliati M, Esposto MC, Lemmer K, Tintelnot K, Colom Valiente MF, Swinne D, Velegraki A, Velho R, Group ECoMMECW (2006) Molecular analysis of 311 Cryptococcus neoformans isolates from 30-month ECMM survey of cryptococcosis in Europe. FEMS Yeast Res 6:614–619PubMedCrossRefGoogle Scholar
  49. 49.
    White TJ, Bruns TD, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for polygenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, New York, USA, pp 315–322Google Scholar
  50. 50.
    Zhan J, Pettway RE, McDonald BA (2003) The global genetic structure of the wheat pathogen Mycosphaerella graminicola is characterized by high nuclear diversity, low mitochondrial diversity, regular recombination, and gene flow. Fungal Genet Biol 38:286–297PubMedCrossRefGoogle Scholar
  51. 51.
    Zhu H, Higginbotham KO, Dancik BP (1988) Intraspecific genetic variability of isozymes in the ectomycorrhizal fungus Suillus tomentosus. Can J Bot 66:588–594Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Fabian Carriconde
    • 1
  • Monique Gardes
    • 1
  • Patricia Jargeat
    • 1
  • Jacob Heilmann-Clausen
    • 2
  • Bello Mouhamadou
    • 1
    • 3
  • Hervé Gryta
    • 1
  1. 1.Laboratoire Evolution et Diversité Biologique, UMR 5174 CNRS-UPS-ENFA, Bât. 4R3Université Paul Sabatier-Toulouse IIIToulouse Cedex 9France
  2. 2.HabitatVisionRøndeDenmark
  3. 3.Laboratoire d’Ecologie Alpine, UMR 5553Université Joseph Fourier, LECA Bât D BiologieGrenoble Cedex 9France

Personalised recommendations