Skip to main content
Log in

Ecophysiology of the Developing Total Bacterial and Lactobacillus Communities in the Terminal Small Intestine of Weaning Piglets

  • Original Article
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Weaning of the pig is generally regarded as a stressful event which could lead to clinical implications because of the changes in the intestinal ecosystem. The functional properties of microbiota inhabiting the pig’s small intestine (SI), including lactobacilli which are assumed to exert health-promoting properties, are yet poorly described. Thus, we determined the ecophysiology of bacterial groups and within genus Lactobacillus in the SI of weaning piglets and the impact of dietary changes. The SI contents of 20 piglets, 4 killed at weaning (only sow milk and no creep feed) and 4 killed at 1, 2, 5, and 11 days post weaning (pw; cereal-based diet) were examined for bacterial cell count and bacterial metabolites by fluorescence in situ hybridization (FISH). Lactobacilli were the predominant group in the SI except at 1 day pw because of a marked reduction in their number. On day 11 pw, bifidobacteria and E. coli were not detected, and Enterobacteriaceae and members of the Clostridium coccoides/Eubacterium rectale cluster were only found occasionally. L. sobrius/L. amylovorus became dominant species whereas the abundance of L. salivarius and L. gasseri/johnsonii declined. Concentration of lactic acid increased pw whereas pH, volatile fatty acids, and ammonia decreased. Carbohydrate utilization of 76 Lactobacillus spp. isolates was studied revealing a shift from lactose and galactose to starch, cellobiose, and xylose, suggesting that the bacteria colonizing the SI of piglets adapt to the newly introduced nutrients during the early weaning period. Identification of isolates based on partial 16S rRNA gene sequence data and comparison with fermentation data furthermore suggested adaptation processes below the species level. The results of our study will help to understand intestinal bacterial ecophysiology and to develop nutritional regimes to prevent or counteract complications during the weaning transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA (1990) Combination of 16S ribosomal-RNA-targeted oligonucleotide probes with flow-cytometry for analyzing mixed microbial-populations. Appl Environ Microbiol 56:1919–1925

    PubMed  CAS  Google Scholar 

  2. Bach Knudsen KE (1997) Carbohydrate and lignin contents of plant materials used in animal feeding. Anim Feed Sci Technol 67:319–338

    Article  CAS  Google Scholar 

  3. Bailey M, Haverson K (2006) The postnatal development of the mucosal immune system and mucosal tolerance in domestic animals. Vet Res 37:443–453

    Article  PubMed  CAS  Google Scholar 

  4. Bateup J, Dobbinson S, Munro K, McConnell MA, Tannock GW (1998) Molecular analysis of the composition of Lactobacillus populations inhabiting the stomach and caecum of pigs. Microb Ecol Health Dis 10:95–102

    Article  Google Scholar 

  5. Bauer E, Williams BA, Smidt H, Verstegen MW, Mosenthin R (2006) Influence of the gastrointestinal microbiota on development of the immune system in young animals. Curr Issues Intest Microbiol 7:35–51

    PubMed  CAS  Google Scholar 

  6. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate—a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300

    Google Scholar 

  7. Benjamini Y, Hochberg Y (2000) On the adaptive control of false discovery rate in multiple testing with independent statistics. J Educ Behav Stat 25:60–83

    Google Scholar 

  8. Berg RD (1996) The indigenous gastrointestinal microflora. Trends Microbiol 4:430–435

    Article  PubMed  CAS  Google Scholar 

  9. Boyd MA, Antonio MAD, Hillier SL (2005) Comparison of API 50 CH strips to whole-chromosomal DNA probes for identification of Lactobacillus species. J Clin Microbiol 43:5309–5311

    Article  PubMed  CAS  Google Scholar 

  10. Castillo M, Skene G, Roca M, Anguita M, Badiola I, Duncan SH, Flint HJ, Martín-Orúe SM (2007) Application of 16S rRNA gene-targeted fluorescence in situ hybridization and restriction fragment length polymorphism to study porcine microbiota along the gastrointestinal tract in response to different sources of dietary fibre. FEMS Microbiol Ecol 59:138–146

    Article  PubMed  CAS  Google Scholar 

  11. Dal Bello F, Hertel C (2006) Oral cavity as natural reservoir for intestinal lactobacilli. Syst Appl Microbiol 29:69–76

    Article  PubMed  CAS  Google Scholar 

  12. DeSantis TD, Hugenholtz P, Keller K, Brodie EL, Larsen N, Piceno YM, Phan R, Andersen GL (2006) NAST: a multiple sequence alignment server for comparative analysis of 16S rRNA genes. Nucleic Acids Res 34:W394–399

    Article  PubMed  CAS  Google Scholar 

  13. Duncan SH, Louis P, Flint HJ (2004) Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product. Appl Environ Microbiol 70:5810–5817

    Article  PubMed  CAS  Google Scholar 

  14. Ehrmann MA, Kurzak P, Bauer J, Vogel RF (2002) Characterization of lactobacilli towards their use as probiotic adjuncts in poultry. J Appl Microbiol 92:966–975

    Article  PubMed  CAS  Google Scholar 

  15. Franks AH, Harmsen HJM, Raangs GC, Jansen GJ, Schut F, Welling GW (1998) Variations of bacterial populations in human faeces measured by fluorescent in situ hybridization with group specific 16S rRNA-targeted oligonucleotide probes. Appl Environ Microbiol 64:3336–3345

    PubMed  CAS  Google Scholar 

  16. Guiard V (2004) Calculation of the q-values for a two stage step-up test procedure that controls the false discovery rate. Schriftenreihe des FBN Dummerstorf 14:31

    Google Scholar 

  17. Haacker K, Block H-J, Weissbach F (1983) Zur kolorimetrischen Milchsäurebestimmung in Silagen mit p-Hydroxydiphenyl. Archives of Animal Nutrition 33:505–512

    CAS  Google Scholar 

  18. Hartemink R, Rombouts FM (1999) Comparison of media for the detection of bifidobacteria, lactobacilli and total anaerobes from faecal samples. J Microbiol Methods 36:181–192

    Article  PubMed  CAS  Google Scholar 

  19. Heilig HGHJ, Zoetendal EG, Vaughan E, Marteau P, Akkermans ADL, de Vos WM (2002) Molecular diversity of Lactobacillus spp. and other lactic acid bacteria in the human intestine as determined by specific amplification of 16S ribosomal DNA. Appl Environ Microbiol 68:114–123

    Article  PubMed  CAS  Google Scholar 

  20. Hill JE, Hemmingsen SM, Goldade BG, Dumonceaux TJ, Klassen J, Zijlstra RT, Goh SH, Van Kessel AG (2005) Comparison of ileum microflora of pigs fed corn-, wheat-, or barley-based diets by chaperonin-60 sequencing and quantitative PCR. Appl Environ Microbiol 71:867–875

    Article  PubMed  CAS  Google Scholar 

  21. Hopwood DE, Hampson DJH (2003) Interactions between the intestinal microflora, diet and diarrhoea, and their influences on piglet health in the immediate post-weaning period. In: Pluske JR, Le Dividich J, Verstegen MWA (eds) Weaning the pig—concepts and consequences. Wageningen Academic Publishers, The Netherlands, pp 199–218

    Google Scholar 

  22. Isolauri E, Kirjavainen PV, Salminen S (2002) Probiotics: a role in the treatment of intestinal infection and inflammation? Gut 50:54–59

    Article  Google Scholar 

  23. Janczyk P, Pieper R, Souffrant WB, Smidt H (2007) Changes in the diversity of pig ileal lactobacilli around weaning determined by means of 16S rRNA-gene amplification and denaturant gradient gel electrophoresis. FEMS Microbiol Ecol 61(1):132–140.

    Article  PubMed  CAS  Google Scholar 

  24. Konstantinov SR, Awati A, Smidt H, Williams BA, Akkermans ADL, de Vos WA (2004) Specific response of a novel and abundant Lactobacillus amylovorus-like phylotype to dietary prebiotics in the guts of weaning piglets. Appl Environ Microbiol 70:3821–3830

    Article  PubMed  CAS  Google Scholar 

  25. Konstantinov SR, Poznanski E, Fuentes S, Akkermans ADL, Smidt H, de Vos WM (2006a) Lactobacillus sobrius sp nov., abundant in the intestine of weaning piglets. Int J Syst Evol Microbiol 56:29–32

    Article  PubMed  CAS  Google Scholar 

  26. Konstantinov SR, Awati AA, Williams BA, Miller BG, Jones P, Stokes CR, Akkermans ADL, Smidt H, de Vos WM (2006b) Post-natal development of the porcine microbiota composition and activities. Environ Microbiol 8:1191–1199

    Article  PubMed  CAS  Google Scholar 

  27. Lalles JP, Boudry G, Favier C, Le Floch N, Lurona I, Montagne L, Oswald IP, Pie S, Piel C, Seve B (2004) Gut function and dysfunction in young pigs: physiology. Anim Res 53:301–316

    Article  CAS  Google Scholar 

  28. Langendijk P, Schut F, Jansen G, Raangs G, Kamphuis G, Wilkinson M, Welling GW (1995) Quantitative fluorescence in situ hybridization of Bifidobacterium spp. with genus specific 16S rRNA-targeted probes and its application in fecal samples. Appl Environ Microbiol 61:3069–3075

    PubMed  CAS  Google Scholar 

  29. Leser TD, Amenuvor JZ, Jensen TK, Lindecrona RH, Boye M, Moller K (2002) Culture-independent analysis of gut bacteria: the pig gastrointestinal tract microbiota revisited. Appl Environ Microbiol 68:673–690

    Article  PubMed  CAS  Google Scholar 

  30. Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, Buchner A, Lai T, Steppi S, Jobb G, Forster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, Konig A, Liss T, Lussmann R, May M, Nonhoff B, Reichel B, Stehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH (2004) ARB: a software environment for sequence data.. Nucleic Acids Res 32:1363–1371

    Article  PubMed  CAS  Google Scholar 

  31. Makarova KS, Koonin EV (2007) Evolutionary genomics of lactic acid bacteria. J Bacteriol 189:1199–1208

    Article  PubMed  CAS  Google Scholar 

  32. Manz W, Amann R, Ludwig W, Vancanneyt M, Schleifer KH (1995) Application of a suite of 16S rRNA-specific oligonucleotide probes designed to investigate bacteria of the phylum cytophaga-flavobacter-bacteroides in the natural environment. Microbiology 142:1097–1106

    Google Scholar 

  33. Mare L, Wolfaardt GM, Dicks LM (2006) Adhesion of Lactobacillus plantarum 423 and Lactobacillus salivarius 241 to the intestinal tract of piglets, as recorded with fluorescent in situ hybridization (FISH), and production of plantaricin 423 by cells colonized to the ileum. J Appl Microbiol 100:838–845

    Article  PubMed  CAS  Google Scholar 

  34. Molenaar D, Bringel F, Schuren FH, de Vos WM, Siezen RJ, Kleerebezem M (2005) Exploring Lactobacillus plantarum genome diversity by using microarrays. J Bacteriol 187:6119–6127

    Article  PubMed  CAS  Google Scholar 

  35. Montagne L, Boudry G, Favier C, Le Huërou-Luron I, Lallès JP, Sève B (2007) Main intestinal markers associated with the changes in gut architecture and function in piglets after weaning. Br J Nutr 97:45–57

    Article  PubMed  CAS  Google Scholar 

  36. Park SH, Itoh K (2005) Species-specific oligonucleotide probes for the detection and identification of Lactobacillus isolated from mouse faeces. J Appl Microbiol 99:51–57

    Article  PubMed  CAS  Google Scholar 

  37. Pluske JR, Hampson DH, Williams IH (1997) Factors influencing the structure and function of the small intestine in the weaned pig: a review. Livest Prod Sci 51:215–236

    Article  Google Scholar 

  38. Pluske JR, Montagne L, Cavaney FS, Mullan BP, Pethick DW, Hampson DJ (2007) Feeding different types of cooked white rice to piglets after weaning influences starch digestion, digesta and fermentation characteristics and the fecal shedding of b-haemolytic Escherichia coli. Br J Nutr 97:298–306

    Article  PubMed  CAS  Google Scholar 

  39. Pot B, Hertel C, Ludwig W, Descheemaeker P, Kersters K, Schleifer KH (1993) Identification and classification of Lactobacillus acidophilus, L. gasseri and L. johnsonii strains by SDS-PAGE and rRNA-targeted oligonucleotide probe hybridization. J Gen Microbiol 139:513–517

    PubMed  CAS  Google Scholar 

  40. Poulsen LK, Licht TR, Rang C, Krogfelt A, Molin S (1995) Physiological state of Escherichia coli BJ4 growing in the large intestines of streptomycin-treated mice. J Microbiol 177:5840–5845

    CAS  Google Scholar 

  41. Sghir A, Antonopoulos D, Mackie RI (1998) Design and evaluation of a Lactobacillus group-specific ribosomal RNA-targeted hybridization probe and its application to the study of intestinal microecology in pigs. Syst Appl Microbiol 21:291–296

    PubMed  CAS  Google Scholar 

  42. Sghir A, Gramet G, Suau A, Rochet V, Pochart P, Dore J (2000) Quantification of bacterial groups within human fecal flora by oligonucleotide probe hybridization. Appl Environ Microbiol 66:2263–2266

    Article  PubMed  CAS  Google Scholar 

  43. Spreeuwenberg MAM, Verdonk JMAJ, Gaskins HR, Verstegen MWA (2001) Small intestine epithelial barrier function is compromised in pigs with low feed intake at weaning. J Nutr 131:1520–1527

    PubMed  CAS  Google Scholar 

  44. Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Nat Acad Sci U S A 100:9440–9445

    Article  CAS  Google Scholar 

  45. Vogel RF, Bocker G, Stolz P, Ehrmann M, Fanta D, Ludwig W, Pot B, Kersters K, Schleifer KH, Hammes WP (1994) Identification of lactobacilli from sourdough and description of Lactobacillus pontis sp. nov. Int J Syst Bacteriol 44:223–229

    Article  PubMed  CAS  Google Scholar 

  46. Voigt J, Steger H (1967) Zur quantitativen Bestimmung von Ammoniak, Harnstoff und Ketokörpern in biologischem Material mit Hilfe eines modifizierten Mikrodiffusionsgefässes. Archives of Animal Nutrition 17:289–293

    Article  CAS  Google Scholar 

  47. Wall R, Fitzgerald G, Hussey S, Ryan T, Murphy B, Ross P, Stanton T (2006) Genomic diversity of cultivable Lactobacillus populations residing in the neonatal and adult gastrointestinal tract. FEMS Microbiol Ecol 59:127–137

    PubMed  Google Scholar 

  48. Wallner G, Amann R, Beisker W (1993) Optimizing fluorescent in situ hybridization with rRNA-targeted probes for flow cytometric identification of microorganisms. Cytometry 14:136–143

    Article  PubMed  CAS  Google Scholar 

  49. Zoetendal EG, Ben Amor K, Harmsen HJ, Schut F, Akkermans ADL, de Vos WM (2002) Quantification of uncultured Ruminococcus obeum-like bacteria in human fecal samples by fluorescent in situ hybridization and flow cytometry using 16S rRNA-targeted probes. Appl Environ Microbiol 68:4225–4232

    Article  PubMed  CAS  Google Scholar 

  50. Zoetendal EG, Collier CT, Koike S, Mackie RI, Gaskins HR (2004) Molecular ecological analysis of the gastrointestinal microbiota: a review. J Nutr 134:465–472

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to our technicians Marlies Althaus, Sonja Bruesch, Aenne Koepnick, Ingetraut Prignitz, Hannelore Sievert, Brigitte Wuerfel, Walter Booth, Roland Gaeth, Niels Burzan, and Manfred Kwella for the animal care and excellent laboratory assistance. The European Union is greatly acknowledged for the financial support of the project FEED FOR PIG HEALTH (FOOD-CT-2004-506144). The authors are solely responsible for the text which does not represent the opinion of the EU, and the EU is not responsible for the information delivered.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Bernhard Souffrant.

Additional information

Dr. Volker Guiard has passed away.

Robert Pieper and Pawel Janczyk contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pieper, R., Janczyk, P., Zeyner, A. et al. Ecophysiology of the Developing Total Bacterial and Lactobacillus Communities in the Terminal Small Intestine of Weaning Piglets. Microb Ecol 56, 474–483 (2008). https://doi.org/10.1007/s00248-008-9366-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-008-9366-y

Keywords

Navigation