Skip to main content
Log in

Analysis of Microbial Community during Biofilm Development in an Anaerobic Wastewater Treatment Reactor

  • Original Article
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The formation, structure, and biodiversity of a multispecies anaerobic biofilm inside an Upflow Anaerobic Sludge Bed (UASB) reactor fed with brewery wastewater was examined using complementary microbial ecology methods such us fluorescence in situ hybridization (FISH), denaturing gradient gel electrophoresis (DGGE), and cloning. The biofilm development can be roughly divided into three stages: an initial attachment phase (0–36 h) characterized by random adhesion of the cells to the surface; a consolidation phase (from 36 h to 2 weeks) defined by the appearance of microcolonies; and maturation phase (from 2 weeks to 2 months). During the consolidation period, proteobacteria with broad metabolic capabilities, mainly represented by members of alpha-Proteobacteria class (Oleomonas, Azospirillum), predominated. Beta-, gamma-, delta- (both syntrophobacteria and sulfate-reducing bacteria) and epsilon- (Arcobacter sp.) Proteobacteria were also noticeable. Archaea first appeared during the consolidation period. A Methanospirillum-like methanogen was detected after 36 h, and this was followed by the detection of Methanosarcina, after 4 days of biofilm development. The mature biofilm displayed a hill and valley topography with cells embedded in a matrix of exopolymers where the spatial distribution of the microorganisms became well-established. Compared to the earlier phases, the biodiversity had greatly increased. Although alpha-Proteobacteria remained as predominant, members of the phyla Firmicutes, Bacteroidete, and Thermotogae were also detected. Within the domain Archaea, the acetoclastic methanogen Methanosaeta concilii become dominant. This study provides insights on the trophic web and the shifts in population during biofilm development in an UASB reactor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  2. Alphenaar PA (1994) Anaerobic granular sludge: characterization, and factors affecting its functioning. Ph.D. thesis, Landbouwuniversiteit, Wageningen, The Netherlands

  3. Amann RI, Krumholz I, Stahl DA (1990) Fluorescent oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J Bateriol 172:762–770

    CAS  Google Scholar 

  4. Amann RI, Binder BJ, Olson BJ, Chisholm SW, Devereux R, Stahl DA (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919–1925

    PubMed  CAS  Google Scholar 

  5. Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    PubMed  CAS  Google Scholar 

  6. Amann RI (1995) In situ identification of microorganisms by whole cell hybridization with rRNA-targeted nucleic acid probes. In: Akkermans ADL, van Elsas JK (eds) Molecular microbial ecology manual, section 3.3.6. Kluwer Academic Publishers, London, pp 3.3.6/1–3.3.6/15

    Google Scholar 

  7. Amann RI, Fuchs BM, Behrens S (2001) The identification of microorganisms by fluorescence in situ hybridisation. Curr Opin Biotech 12:231–236

    Article  PubMed  CAS  Google Scholar 

  8. Araujo JC, Brucha G, Campos JR, Vazoller RF (2000) Monitoring the development of anaerobic biofilms using fluorescent in situ hybridization and confocal laser scanning microscopy. Water Sci Technol 41:69–77

    CAS  Google Scholar 

  9. Boetius A, Ravenschlag K, Schubert C, Rickert D, Widdel F, Gieseke A, Amann RI, Jørgesen B, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626

    Article  PubMed  CAS  Google Scholar 

  10. Bergey’s manual of systematic bacteriology, 2nd edn (2005). In: Brenner DJ, Krieg NR, Staley JT (eds) The proteobacteria, Springer.

  11. Brosius J, Dull TJ, Sleeter DD, Noller HF (1981) Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. J Mol Biol 148:107–127

    Article  PubMed  CAS  Google Scholar 

  12. Chan O-C, Liu W-T, Fang HHP (2001) Study of microbial community of brewery-treating granular sludge by denaturing gradient gel electrophoresis of 16S rRNA gene. Water Sci Technol 43:77–82

    PubMed  CAS  Google Scholar 

  13. Costerton JW, Llewandowski Z, DeBeer D, Caldwell D, Korber D, James G (1994) Biofilms, the customized microniche. J. Bacteriol 176:2137–2142

    PubMed  CAS  Google Scholar 

  14. Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322

    Article  PubMed  CAS  Google Scholar 

  15. Díaz EE, Amils R, Sanz JL (2003) Molecular ecology of anaerobic granular sludge grown at different conditions. Water Sci Technol 48:57–64

    PubMed  Google Scholar 

  16. Díaz EE, Stams AJ, Amils R, Sanz JL (2006) Phenotypic properties and microbial diversity of methanogenic granules from a full-scale upflow anaerobic sludge bed reactor treating brewery wastewater. Appl Environ Microbiol 72:4942–4949

    Article  PubMed  CAS  Google Scholar 

  17. Doré J, Sghir A, Hannequart-Gramet G, Corthier G, Pochart P (1998) Design and evaluation of a 16S rRNA-targeted oligonucleotide probe for specific detention and quantification of human faecal Bacteroides populations. Syst Appl Microbiol 21:65–71

    PubMed  Google Scholar 

  18. Dunne WM (2002) Bacterial adhesion: seen any good biofilms lately? Clin Microbiol Rev 15:155–166

    Article  PubMed  CAS  Google Scholar 

  19. Egli D, Bosshard G, Werlen C, Lais P, Siegrist H, Zehnder AJB, Van der Meer JR (2003) Microbial composition and structure of a rotating biological contactor biofilm treating ammonium-rich wastewater without organic carbon. Microbial Ecol 45:419–432

    Article  CAS  Google Scholar 

  20. Fang HHP (2000) Microbial distribution in UASB granules and its resulting effects. Water Sci Technol 42:201–208

    CAS  Google Scholar 

  21. Fang HHP, Chan K-Y, Xu L-C (2000) Quantification of bacterial adhesion forces using atomic force microscopy (AFM). J Microbiol Meth 40:89–97

    Article  CAS  Google Scholar 

  22. García Encina PA, Hidalgo MD (2005) Influence of substrate feed patterns on biofilm development in anaerobic fluidized bed reactors (AFBR). Process Biochem 40:2509–2516

    Article  CAS  Google Scholar 

  23. Gonzalez-Gil G, Lens PNL, van Aelst A, van As H, Versprille AI, Lettinga G (2001) Cluster structure of anaerobic aggregates of an expanded granular sludge bed reactor. Appl Environm Microb 678:3683–3692

    Article  Google Scholar 

  24. Harmsen HJM, Kengen HMP, Akkermans ADL, Stams AJM, De Vos WM (1996) Detection and localization of syntrophic propionate-oxidizing bacteria in granular sludge by in situ hybridization using 16S rRNA-based oligonucleotide probes. Appl Environ Microb 62:1656–1663

    CAS  Google Scholar 

  25. Hentzer M, Teitzel GM, Balzer GJ, Heydorn A, Molin S, Givskov M, Parsek MR (2001) Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function. J Bacteriol 183:5395–5401

    Article  PubMed  CAS  Google Scholar 

  26. Hidalgo MD, García-Encina PA (2002) Biofilm development and bed segregation in a methanogenic fluidized bed reactor. Water Res 36:3083–3091

    Article  PubMed  CAS  Google Scholar 

  27. Kanamori T, Rashid N, Morikawa M, Haruyuki A, Imanaka T (2002) Oleomonas sagaranensis gen. nov., sp. nov., represents a novel genus in the α-Proteobacteria. FEMS Microbiol Lett 217:255–261

    PubMed  CAS  Google Scholar 

  28. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematic. Wiley, New York, NY, pp 115–175

    Google Scholar 

  29. Lehtola MJ, Miettinen IT, Keinänen MM, Kekki TK, Laine O, Hirvonen A, Vartiainen T, Martikanen PJ (2004) Microbiology, chemistry and biofilm development in a pilot drinking water distribution system with copper and plastic pipes. Water Res 38:3769–3779

    Article  PubMed  CAS  Google Scholar 

  30. Liu Y, Tay J-H (2002) The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge. Water Res 36:1653–1665

    Article  PubMed  CAS  Google Scholar 

  31. Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, Buchner A, Lai T, Steppi S, Jobb G, Förster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, König A, Liss T, Lüßmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371

    Article  PubMed  CAS  Google Scholar 

  32. Manz W, Amann R, Ludwig W, Wagner M, Schleifer KH (1992) Phylogenetic oligodeoxynucleotide probes for the major subclasses of proteobacteria: problems and solutions. Syst Appl Microbiol 15:593–600

    Google Scholar 

  33. Manz W, Eisenbrecher M, Neu TR, Szewzyk U (1998) Abundance and spatial organization of gram-negative sulfate-reducing bacteria in activated sludge investigated by in situ probing with specific 16S rRNA targeted oligonucleotides. FEMS Microbiol Ecol 25:43–61

    Article  CAS  Google Scholar 

  34. Manz W, Wendt-Potthoff K, Neu TR, Szewzyk U, Lawrence JR (1999) Phylogenetic composition, spatial structure, and dynamics of lotic bacterial biofilms investigated by fluorescent in situ hybridization and confocal laser scanning microscopy. Microbial Ecol 37:225–237

    Article  CAS  Google Scholar 

  35. McLeod ES, MacDonald R, Brözel VS (2002) Distribution of Shewanella putrefaciens and Desulfovibrio vulgaris in sulphidogenic biofilms of industrial cooling water systems determined by fluorescent in situ hybridisation. Water SA 28:123–128

    CAS  Google Scholar 

  36. Meier H, Amann RI, Ludwig W, Schleifer KH (1999) Specific oligonucleotide probes for in situ detection of a major group of gram-positive bacteria with low DNA G + C content. Syst Appl Microbiol 22:186–196

    PubMed  CAS  Google Scholar 

  37. Miranda-Tello E, Fardeau M-L, Thomas P, Ramirez F, CAsalot L, Cayol J-L, Garcia J-L, Ollivier B (2004) Petrotoga mexicana sp. nov., a novel thermophilic, anaerobic and xylanolytic bacterium isolated from an oil-producing well in the Gulf of Mexico. Int J Sys Evo Microbiol 54:169–174

    Article  CAS  Google Scholar 

  38. Mujer W, Zehnder AJB (1983) Conversion. processes in anaerobic digestion. Water Sci Technol 15:127–167

    Google Scholar 

  39. Muyzer G, Hottenträger S, Teske A, Wawer C (1996) Denaturing gradient gel electrophoresis of PCR-amplified 16S rDNA - A new molecular approach to analyse the genetic diversity of mixed microbial communities. In: Akkermans ADL, van Elsas JK (eds) Molecular microbial ecology manual, Section 3.4.4. Kluiwer Academic Publishers, London, pp 3.4.4./1–3.4.4./23

    Google Scholar 

  40. Muyzer G, Smalla K (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Mini review. Anton Leeuw Int J G 73:127–141

    Article  CAS  Google Scholar 

  41. Nakagawa T, Sato S, Yamamoto Y, Fukui M (2002) Successive changes in community structure of an ethylbenzene-degrading sulfate-reducing consortium. Water Res 36:2813–2823

    Article  PubMed  CAS  Google Scholar 

  42. Neef A, (1997) An wendug der in situ-Einzelzell-Identifizierung von Bakterien zur populations analyse in Komplexen Mikrobiellen biozönsen. Doctoral thesis, Faculty of Biology, Chemistry and Geosciences, Technische Universität München.

  43. Raskin L, Strinmley J, Rittmann BE, Stahl DA (1994) Group specific 16S RNA hybridization probes to describe natural communities of methanogens. Appl Environ Microb 60:1232–1240

    CAS  Google Scholar 

  44. Roller E, Wagner M, Amann RI, Ludwig W, Schleifer KH (1994) In situ probing of gram-positive bacteria with high DNA G + C content using 23S rRNA targeted oligonucleotides. Microbiology 140:2849–2858

    Article  PubMed  CAS  Google Scholar 

  45. Roselló-Mora R, Thamdrup B, Schäfer H, Weller R, Amann R (1999) The response of the microbial community of marine sediments to organic carbon input under anaerobic conditions. Sist Appl Microbiol 22:237–248

    Google Scholar 

  46. Sanz JL, Köchling T (2007) Molecular. biology techniques used in wastewater treatment: An overview. Process Biochem 42:119–133

    Article  CAS  Google Scholar 

  47. Schmidt JE, Ahring BK (1995) Granular sludge formation in upflow anaerobic sludge blanket (UASB) reactors. Biotechnol Bioeng 49:229–246

    Article  Google Scholar 

  48. Sekiguchi Y, Kamagata Y, Nakamura K, Ohashi A, Harada H (1999) Fluorescence in situ hybridization using 16S rRNA-targeted oligonucleotides reveals localization of methanogens and selected uncultured bacteria in mesophilic and thermophilic sludge granules. Appl Environ Microb 65:1280–1288

    CAS  Google Scholar 

  49. Silyn-Roberts G, Lewis G (2003) Substrata effects on bacterial biofilm development in a subsurface flow dairy waste treatment wetland. Water Sci Technol 48:261–269

    PubMed  CAS  Google Scholar 

  50. Stahl DA, Amann RI (1991) Development and application of nucleic acid probes. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics.. Wiley Inc, New York, pp 205–247

    Google Scholar 

  51. Tolker-Nielsen T, Brinch UC, Ragas PC, Andersen JB, Jacobsen CS, Molin S (2000) Development and dynamics of Pseudomonas sp. biofilms. J Bacteriol 182:6482–6489

    Article  CAS  Google Scholar 

  52. Thörn M, Mattsson A, Sörensson F (1996) Biofilm development in a nitrifying trickling filter. Water Sci Tech 34:83–89

    Article  Google Scholar 

  53. Tsuneda S, Aikawa H, Hayashi H, Yuasa A, Hirata A (2003) Extracellular polymeric substances responsible for bacterial adhesion onto solid surface. FEMS Microbiol Lett 223:287–292

    Article  PubMed  CAS  Google Scholar 

  54. Wagner M, Horn M, Daims H (2003) Fluorescence in situ hybridisation for the identification and characterization of prokaryotes. Curr Opin Microbiol 6:302–309

    Article  PubMed  CAS  Google Scholar 

  55. Wallner G, Amann R, Beisker W (1993) Optimizing fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry 14:136–143

    Article  PubMed  CAS  Google Scholar 

  56. Wäsche S, Horn H, Hempel DC (2002) Influence of growth conditions on biofilm development and mass transfer at the bulk/biofilm interface. Water Res 36:4775–4784

    Article  PubMed  Google Scholar 

  57. Watnick PI, Kolter R (1999) Steps in the development of a Vibrio cholerae biofilm. Mol Microbiol 34:586–595

    Article  PubMed  CAS  Google Scholar 

  58. Watnick P, Kolter R (2000) Minireview. biofilm, city of Microbes. J Bacteriol 182:2675–2679

    Article  PubMed  CAS  Google Scholar 

  59. Wery N, Lesongeur F, Pignet P, Derennes V, Cambon-Bonavita M-A, Godfroy A, Barbier G (2001) Marinitoga camini gen. nov., sp. nov., a rod-shaped bacterium belonging to the order Thermotogales, isolated from a deep-sea hydrothermal vent. Int J Sys Evo Microbiol 51:495–504

    CAS  Google Scholar 

  60. Wimpenny J, Manz W, Szewzyk U (2000) Heterogeneity in biofilms. FEMS Microbiol Rev 24:661–671

    Article  PubMed  CAS  Google Scholar 

  61. Wu W-M, Hickey RF, Zeikus JG (1991) Characterization of metabolic performance of methanogenic granules treating brewery wastewater: role of sulphate-reducing bacteria. Appl Environm Microb 57:3438–3449

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grant CTM2006–04131/TECNO from the Spanish Ministry of Education and Science. The CBM is also indebted to an institutional grant from the Fundación Areces.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José L. Sanz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernández, N., Díaz, E.E., Amils, R. et al. Analysis of Microbial Community during Biofilm Development in an Anaerobic Wastewater Treatment Reactor. Microb Ecol 56, 121–132 (2008). https://doi.org/10.1007/s00248-007-9330-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-007-9330-2

Keywords

Navigation