Skip to main content

Advertisement

Log in

Two Distinct Photobacterium Populations Thrive in Ancient Mediterranean Sapropels

  • Original Article
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Eastern Mediterranean sediments are characterized by the periodic occurrence of conspicuous, organic matter-rich sapropel layers. Phylogenetic analysis of a large culture collection isolated from these sediments revealed that about one third of the isolates belonged to the genus Photobacterium. In the present study, 22 of these strains were examined with respect to their phylogenetic and metabolic diversity. The strains belonged to two distinct Photobacterium populations (Mediterranean cluster I and II). Strains of cluster I were isolated almost exclusively from organic-rich sapropel layers and were closely affiliated with P. aplysiae (based on their 16S rRNA gene sequences). They possessed almost identical Enterobacterial Repetitive Intergenic Consensus (ERIC) and substrate utilization patterns, even among strains from different sampling sites or from layers differing up to 100,000 years in age. Strains of cluster II originated from sapropels and from the surface and carbon-lean intermediate layers. They were related to Photobacterium frigidiphilum but differed significantly in their fingerprint patterns and substrate spectra, even when these strains were obtained from the same sampling site and layer. Temperature range for growth (4 to 33°C), salinity tolerance (5 to 100‰), pH requirements (5.5–9.3), and the composition of polar membrane lipids were similar for both clusters. All strains grew by fermentation (glucose, organic acids) and all but five by anaerobic respiration (nitrate, dimethyl sulfoxide, anthraquinone disulfonate, or humic acids). These results indicate that the genus Photobacterium forms subsurface populations well adapted to life in the deep biosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Acinas SG, Klepac-Ceraj V, Hunt DE, Pharino C, Ceraj I, Distel DL, Polz MF (2004) Fine-scale phylogenetic architecture of a complex bacterial community. Nature 430:551–554

    Article  PubMed  CAS  Google Scholar 

  2. Arber W, Naas T, Blot M (1994) Generation of genetic diversity by DNA rearrangements in resting bacteria. FEMS Microbiol Ecol 15:5–14

    Article  CAS  Google Scholar 

  3. Bagwell CE, Lovell CR (2000) Microdiversity of culturable diazotrophs from rhizoplanes of the salt marsh grasses Spartina alterniflora and Juncus roemerianus. Microb Ecol 39:128–136

    Article  PubMed  CAS  Google Scholar 

  4. Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Methanogens: reevaluation of a unique biological group. Microbiol Rev 43:260–296

    PubMed  CAS  Google Scholar 

  5. Baumann P, Baumann L (1984) Genus II Photobacterium Beijerinck 1889, 401 AL. In: Krieg, NR, Holt, JG (Eds.) Bergey’s Manual of Systematic Bacteriology. Williams and Wilkins, Baltimore, pp 539–545

    Google Scholar 

  6. Beijerinck MW (1889) Le Photobacterium luminosum. Bactérie lumineuse de la Mer Nord. Arch Néerl Sci 23:401–427

    Google Scholar 

  7. Benz M, Schink B, Brune A (1998) Humic acid reduction by Propionibacterium freudenreichii and other fermenting bacteria. Appl Environ Microbiol 64:4507–4512

    PubMed  CAS  Google Scholar 

  8. Coolen MJL, Cypionka H, Sass AM, Sass H, Overmann J (2002) Ongoing modification of Mediterranean Pleistocene sapropels mediated by prokaryotes. Science 296:2407–2410

    Article  PubMed  CAS  Google Scholar 

  9. Coolen MJL, Overmann J (2000) Functional exoenzymes as indicators of metabolically active bacteria in 124,000-year-old sapropel layers of the eastern Mediterranean Sea. Appl Environ Microbiol 66:2589–2598

    Article  PubMed  CAS  Google Scholar 

  10. Cowan DA (2000) Microbial genomes-the untapped resource. Trends Biotechnol 18:14–16

    Article  PubMed  CAS  Google Scholar 

  11. Cowen JP, Giovannoni SJ, Kenig F, Johnson HP, Butterfield D, Rappe MS, Hutnak M, Lam P (2003) Fluids from aging ocean crust that support microbial life. Science 299:120–123

    Article  PubMed  CAS  Google Scholar 

  12. Cragg BA, Law KM, Cramp A, Parkes RJ (1998) The response of bacterial populations to sapropels in deep sediments of the Eastern Mediterranean (site 969). In: Robertson, AHF, Emeis, K-C, Richter, C, Camerlenghi, A (Eds.) Proc Ocean Drilling Program. Sci Results 160, College Station, Texas, pp 303–307

    Google Scholar 

  13. D’Hondt S, Jørgensen BB, Miller DJ, Batzke A, Blake R, Cragg BA, Cypionka H, Dickens GR, Ferdelman T, Hinrichs K-U, Holm NG, Mitterer R, Spivack A, Wang G, Bekins B, Engelen B, Ford K, Gettemy G, Rutherford SD, Sass H, Skilbeck CG, Aiello IW, Guerin G, House CH, Inagaki F, Meister P, Naehr T, Niitsuma S, Parkes RJ, Schippers A, Smith DC, Teske A, Wiegel J, Padilla CN, Acosta JLS (2004) Distributions of microbial activities in deep subseafloor sediments. Science 306:2216–2221

    Article  PubMed  CAS  Google Scholar 

  14. DeLong EF (2004) Microbial life breathes deep. Science 306:2198–2200

    Article  PubMed  CAS  Google Scholar 

  15. Feil EJ (2004) Small change: keeping pace with microevolution. Nat Rev Microbiol 2:483–495

    Article  PubMed  CAS  Google Scholar 

  16. Fuhrman JA, Campbell L (1998) Microbial microdiversity. Nature 393:410–411

    Article  CAS  Google Scholar 

  17. Grasshoff K, Kremling K, Ehrhardt M (1999) Methods of Seawater Analysis, 3rd edn. Wiley-VCH, Weinheim

    Google Scholar 

  18. Gray ND, Howarth R, Rowan A, Pickup RW, Jones JG, Head IM (1999) Natural communities of Achromatium oxaliferum comprise genetically, morphologically, and ecologically distinct subpopulations. Appl Environ Microbiol 65:5089–5099

    PubMed  CAS  Google Scholar 

  19. Hahn MW, Pockl M, Wu QL (2005) Low intraspecific diversity in a Polynucleobacter subcluster population numerically dominating bacterioplankton of a freshwater pond. Appl Environ Microbiol 71:4539–4547

    Article  PubMed  CAS  Google Scholar 

  20. Jaspers E, Overmann J (2004) Ecological significance of microdiversity: Identical 16S rRNA gene sequences can be found in bacteria with highly divergent genomes and ecophysiologies. Appl Environ Microbiol 70:4831–4839

    Article  PubMed  CAS  Google Scholar 

  21. Johnson RM, Weisrock WP (1969) Hyphomicrobium indicum sp. nov. Hyphomicrobiaceae Douglas. Int J Syst Bacteriol 19:295–307

    Google Scholar 

  22. Killops SD, Killops VJ (2004) An Introduction to Organic Geochemistry, 2nd edn. Blackwell, Oxford

    Google Scholar 

  23. Klepac-Ceraj V, Bahr M, Crump BC, Teske AP, Hobbie JE, Polz MF (2004) High overall diversity and dominance of microdiverse relationships in salt marsh sulphate-reducing bacteria. Environ Microbiol 6:686–698

    Article  PubMed  CAS  Google Scholar 

  24. Kormas KA, Smith DC, Edgcomb V, Teske A (2003) Molecular analysis of deep subsurface microbial communities in Nankai Trough sediments (ODP Leg 190, Site 1176). FEMS Microbiol Ecol 45:115–125

    Article  CAS  PubMed  Google Scholar 

  25. Kroon D, Alexander I, Little M, Lourens LJ, Matthewson A, Robertson AHF, Sakamoto T (1998) Oxygen isotope and sapropel stratigraphy in the Eastern Mediterranean during the last 3.2 million years. In: Robertson, AHF, Emeis, K-C, Richter, C, Camerlenghi, A (Eds.) Proc Ocean Drilling Program. Sci Results 160, College Station, Texas, pp 181–189

    Google Scholar 

  26. López-López A, Bartual SG, Stal L, Onyshchenko O, Rodríguez-Valera F (2005) Genetic analysis of housekeeping genes reveals a deep-sea ecotype of Alteromonas macleodii in the Mediterranean Sea. Environ Microbiol 7:649–659

    Article  PubMed  Google Scholar 

  27. Lourens LJ, Hilgen FJ, Gudjonsson L, Zachariasse WJ (1992) Late Pliocene to early Pleistocene astronomically forced sea surface productivity and temperature variations in the Mediterranean. Mar Micropaleontol 19:49–78

    Article  Google Scholar 

  28. Lovley DR, Coates JD, Blunt-Harris EL, Phillips EJP, Woodward JC (1996) Humic substances as electron acceptors for microbial respiration. Nature 382:445–448

    Article  CAS  Google Scholar 

  29. Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, Buchner A, Lai T, Steppi S, Jobb G, Forster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, Konig A, Liss T, Lussmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer K-H (2004) ARB: A software environment for sequence data. Nucleic Acids Res 32:1363–1371

    Article  PubMed  CAS  Google Scholar 

  30. Martens-Habbena W, Sass H (2006) Sensitive determination of microbial growth by nucleic acid staining in aqueous suspension. Appl Environ Microbiol 72:87–95

    Article  PubMed  CAS  Google Scholar 

  31. Moore LR, Rocap G, Chisholm SW (1998) Physiology and molecular phylogeny of coexisting Prochlorococcus ecotypes. Nature 393:464–467

    Article  PubMed  CAS  Google Scholar 

  32. Müller KD, Schmid EN, Kroppenstedt RM (1998) Improved identification of mycobacteria by using the microbial identification system in combination with additional trimethylsulfonium hydroxide pyrolysis. J Clin Microbiol 36:2477–2480

    PubMed  Google Scholar 

  33. Newberry CJ, Webster G, Cragg BA, Parkes RJ, Weightman AJ, Fry JC (2004) Diversity of prokaryotes and methanogenesis in deep subsurface sediments from the Nankai Trough, Ocean Drilling Program Leg 190. Environ Microbiol 6:274–287

    Article  PubMed  Google Scholar 

  34. Nogi Y, Masui N, Kato C (1998) Photobacterium profundum sp. nov., a new, moderately barophilic bacterial species isolated from a deep-sea sediment. Extremophiles 2:1–7

    Article  PubMed  CAS  Google Scholar 

  35. Palys T, Nakamura LK, Cohan FM (1997) Discovery and classification of ecological diversity in the bacterial world: the role of DNA sequence data. Int J Syst Bacteriol 47:1145–1156

    Article  PubMed  CAS  Google Scholar 

  36. Parkes RJ, Cragg BA, Bale SJ, Getliff JM, Goodman K, Rochelle PA, Fry JC, Weightman AJ, Harvey SM (1994) Deep bacterial biosphere in Pacific Ocean sediments. Nature 371:410–413

    Article  Google Scholar 

  37. Parkes RJ, Webster G, Cragg BA, Weightman AJ, Newberry CJ, Ferdelman TG, Kallmeyer J, Jorgensen BB, Aiello IW, Fry JC (2005) Deep sub-seafloor prokaryotes stimulated at interfaces over geological time. Nature 436:390–394

    Article  PubMed  CAS  Google Scholar 

  38. Passier HF, Middelburg JJ, van Os BJH, De Lange GJ (1996) Diagenetic pyritisation under eastern Mediterranean sapropels caused by downward sulphide diffusion. Geochim Cosmochim Acta 60:751–763

    Article  CAS  Google Scholar 

  39. Pukall R, Päuker O, Buntefuß D, Ulrichs G, Lebaron P, Bernard L, Guindulain T, Vives-Rego J, Stackebrandt E (1999) High sequence diversity of Alteromonas macleodii-related cloned and cellular 16S rDNAs from a Mediterranean seawater mesocosm experiment. FEMS Microbiol Ecol 28:335–344

    Article  CAS  Google Scholar 

  40. Rohling EJ (1994) Review and new aspects concerning the formation of eastern Mediterranean sapropels. Mar Geol 122:1–28

    Article  Google Scholar 

  41. Salle AM (1961) Fundamental Principles of Bacteriology, 5th edn. McGraw-Hill, New York, Toronto, London

    Google Scholar 

  42. Sass AM, Sass H, Coolen MJL, Cypionka H, Overmann J (2001) Microbial communities in the chemocline of a hypersaline deep-sea basin (Urania Basin, Mediterranean Sea). Appl Environ Microbiol 67:5392–5402

    Article  PubMed  CAS  Google Scholar 

  43. Sass H, Wieringa E, Cypionka H, Babenzien HD, Overmann J (1998) High genetic and physiological diversity of sulfate-reducing bacteria isolated from an oligotrophic lake sediment. Arch Microbiol 170:243–251

    Article  PubMed  CAS  Google Scholar 

  44. Schippers A, Neretin LN, Kallmeyer J, Ferdelman TG, Cragg BA, Parkes RJ, Jørgensen BB (2005) Prokaryotic cells of the deep sub-seafloor biosphere identified as living bacteria. Nature 433:861–864

    Article  PubMed  CAS  Google Scholar 

  45. Schloter M, Lebuhn M, Heulin T, Hartmann A (2000) Ecology and evolution of bacterial microdiversity. FEMS Microbiol Rev 24:647–660

    Article  PubMed  CAS  Google Scholar 

  46. Seo HJ, Bae SS, Lee J-H, Kim S-J (2005) Photobacterium frigidiphilum sp. nov., a psychrophilic, lipolytic bacterium isolated from deep-sea sediments of Edison Seamount. Int J Syst Evol Microbiol 55:1661–1666

    Article  PubMed  CAS  Google Scholar 

  47. Seo HJ, Bae SS, Yang SH, Lee JH, Kim S-J (2005) Photobacterium aplysiae sp. nov., a lipolytic marine bacterium isolated from eggs of the sea hare Aplysia kurodai. Int J Syst Evol Microbiol 55:2293–2296

    Article  PubMed  CAS  Google Scholar 

  48. Slomp CP, Thomson J, de Lange GJ (2002) Enhanced regeneration of phosphorus during formation of the most recent eastern Mediterranean sapropel (S1). Geochim Cosmochim Acta 66:1171–1184

    Article  CAS  Google Scholar 

  49. Süß J, Engelen B, Cypionka H, Sass H (2004) Quantitative analysis of bacterial communities from Mediterranean sapropels based on cultivation-dependent methods. FEMS Microbiol Ecol 51:109–121

    Article  PubMed  CAS  Google Scholar 

  50. Süß J, Schubert K, Sass H, Cypionka C, Overmann J, Engelen B (2006) Widespread distribution and high abundance of Rhizobium radiobacter within Mediterranean subsurface sediments. Environ Microbiol 8:1753–1763

    Article  PubMed  Google Scholar 

  51. Ten Haven HL, De Lange GJ, McDuff RE (1987) Interstitial water studies of late Quarternary Eastern Mediterranean sediments with emphasis on early diagenetic reactions and evaporitic salt influences. Mar Geol 75:119–136

    Article  Google Scholar 

  52. Thompson FL, Thompson CC, Naser S, Hoste B, Vandemeulebroecke K, Munn C, Bourne D, Swings J (2005) Photobacterium rosenbergii sp. nov. and Enterovibrio coralii sp. nov., vibrios associated with coral bleaching. Int J Syst Evol Microbiol 55:913–917

    Article  PubMed  CAS  Google Scholar 

  53. Thompson JR, Pacocha S, Pharino C, Klepac-Ceraj V, Hunt DE, Benoit J, Sarma-Rupavtarm R, Distel DL, Polz MF (2005) Genotypic diversity within a natural coastal bacterioplankton population. Science 307:1311–1313

    Article  PubMed  CAS  Google Scholar 

  54. Thompson JR, Randa MA, Marcelino LA, Tomita-Mitchell A, Lim E, Polz MF (2004) Diversity and dynamics of a North Atlantic coastal Vibrio community. Appl Environ Microbiol 70:4103–4110

    Article  PubMed  CAS  Google Scholar 

  55. Toffin L, Webster G, Weightman AJ, Fry JC, Prieur D (2004) Molecular monitoring of culturable bacteria from deep-sea sediment of the Nankai Trough, Leg 190 Ocean Drilling Program. FEMS Microbiol Ecol 48:357–367

    Article  CAS  PubMed  Google Scholar 

  56. Vancanneyt M, Witt S, Abraham WR, Kersters K, Frederickson HL (1996) Fatty acid content in whole-cell hydrolysates and phospholipid fractions of Pseudomonas: a taxonomic evaluation. Syst Appl Microbiol 19:528–540

    CAS  Google Scholar 

  57. Van Santvoort PJM, De Lange GJ, Thomson J, Cussen H, Wilson TRS, Krom MD, Ströhle K (1996) Active post-depositional oxidation of the most recent sapropel (S1) in sediments of the Eastern Mediterranean. Geochim Cosmochim Acta 60:4007–4024

    Article  Google Scholar 

  58. Versalovic J, Koeuth T, Lupski JR (1991) Distribution of repetitive DNA-sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res 19:6823–6831

    Article  PubMed  CAS  Google Scholar 

  59. Vezzi A, Campanaro S, D’Angelo M, Simonato F, Vitulo N, Lauro FM, Cestaro A, Malacrida G, Simionati B, Cannata N, Romualdi C, Bartlett DH, Valle G (2005) Life at depth: Photobacterium profundum genome sequence and expression analysis. Science 307:1459–1461

    Article  PubMed  CAS  Google Scholar 

  60. Webster G, Parkes RJ, Fry JC, Weightman AJ (2004) Widespread occurrence of a novel division of bacteria identified by 16S rRNA gene sequences originally found in deep marine sediments. Appl Environ Microbiol 70:5708–5713

    Article  PubMed  CAS  Google Scholar 

  61. Wellsbury P, Mather I, Parkes RJ (2002) Geomicrobiology of deep, low organic carbon sediments in the Woodlark Basin, Pacific Ocean. FEMS Microbiol Ecol 42:59–70

    Article  CAS  PubMed  Google Scholar 

  62. Widdel F, Bak F (1992) Gram-negative mesophilic sulfate-reducing bacteria. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (Eds.) The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd edn. Springer, New York, pp 3352–3378

    Google Scholar 

  63. Xie C-H, Yokota A (2004) Transfer of Hyphomicrobium indicum to the genus Photobacterium as Photobacterium indicum comb. nov. Int J Syst Evol Microbiol 54:2113–2116

    Article  PubMed  CAS  Google Scholar 

  64. Yoon J-H, Lee J-K, Kim Y-O, Oh T-K (2005) Photobacterium lipolyticum sp. nov., a bacterium with lipolytic activity isolated from the Yellow Sea in Korea. Int J Syst Evol Microbiol 55:335–339

    Article  PubMed  CAS  Google Scholar 

  65. Zink KG, Mangelsdorf K (2004) Efficient and rapid method for extraction of intact phospholipids from sediments combined with molecular structure elucidation using LC-ESI-MS-MS. Anal Bioanal Chem 380:798–812

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The support of the scientific party of RV Meteor cruises M40/4 and M51/3, with Christoph Hemleben as chief scientist is gratefully acknowledged. We thank two anonymous reviewers for their support and valuable discussion. Jürgen Rullkötter, Jürgen Köster, and Bernd Kopke are acknowledged for providing facilities for phospholipid analysis and for experimental help. This work was supported by a grant of the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik Sass.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Süß, J., Herrmann, K., Seidel, M. et al. Two Distinct Photobacterium Populations Thrive in Ancient Mediterranean Sapropels. Microb Ecol 55, 371–383 (2008). https://doi.org/10.1007/s00248-007-9282-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-007-9282-6

Keywords

Navigation