Skip to main content
Log in

Inorganic Species Distribution and Microbial Diversity within High Arctic Cryptoendolithic Habitats

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Cryptoendolithic habitats in the Canadian high Arctic are associated with a variety of microbial community assemblages, including cyanobacteria, algae, and fungi. These habitats were analyzed for the presence of metal ions by sequential extraction and evaluated for relationships between these and the various microorganisms found at each site using multivariate statistical methods. Cyanobacteria-dominated communities exist under higher pH conditions with elevated concentrations of calcium and magnesium, whereas communities dominated by fungi and algae are characterized by lower pH conditions and higher concentrations of iron, aluminum, and silicon in the overlying surfaces. These results suggest that the activity of the dominant microorganisms controls the pH of the surrounding environment, which in turn dictates rates of weathering or the possibility for surface crust formation, both ultimately deciding the structure of microbial diversity for each cryptoendolithic habitat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. AES (1984) Eureka. Principle Station Data 79. Atmospheric Environment Service, Environment Canada, Downsview, Ontario, p 25

    Google Scholar 

  2. Ascaso, C, Wierzchos, J (2002) New approaches to the study of Antarctic lithobiontic microorganisms and their inorganic traces, and their application in detection of life in Martian rocks. Int Microbiol 5: 215–222

    Article  PubMed  CAS  Google Scholar 

  3. Ascaso, C, Wierzchos, J (2003) The search for biomarkers and microbial fossils in Antarctic rock microhabitats. Geomicrobiol J 20: 439–450

    Article  CAS  Google Scholar 

  4. Ascaso, C, Wierzchos, J, Castello, R (1998) Study of the biogenic weathering of calcareous litharenite stones caused by lichen and endolithic microorganisms. Int Biodeterior Biodegrad 42: 29–38

    Article  CAS  Google Scholar 

  5. Bell, RA (1993) Cryptoendolithic algae of hot semiarid lands and deserts. J Phycol 29: 133–139

    Article  Google Scholar 

  6. Bell, RA, Athey, PV, Sommerfeld, MR (1986) Cryptoendolithic algal communities of the Colorado plateau. J Phycol 22: 429–435

    Google Scholar 

  7. Blackhurst, RL, Jarvis, K, Grady, MM (2004) Biologically-induced elemental variations in Antarctic sandstones: a potential test for Martian micro-organisms. Int J Astrobiol 3: 97–106

    Article  CAS  Google Scholar 

  8. Blum, JD, Klaue, A, Nezat, CA, Driscoll, CT, Johnson, CE, Siccama, TG, Eagar, C, Fahey, TJ, Likens, GE (2002) Mycorrhizal weathering of apatite as an important calcium source in base-poor forest ecosystems. Nature 417: 729–731

    Article  PubMed  CAS  Google Scholar 

  9. Budel, B (1999) Ecology and diversity of rock-inhabiting cyanobacteria in tropical regions. Eur J Phycol 34: 361–370

    Article  Google Scholar 

  10. Budel, B, Weber, B, Kuhl, M, Pfanz, H, Sultemeyer, D, Wessels, D (2004) Reshaping of sandstone surfaces by cryptoendolithic cyanobacteria: bioalkalization causes chemical weathering in arid landscapes. Geobiology 2: 261–268

    Article  Google Scholar 

  11. Bungartz, F, Garvie, LAJ, Nash, III TH (2004) Anatomy of the endolithic Sonoran Desert lichen Verrucaria rubrocincta Breuss: implications for biodeterioration and biomineralization. Lichenologist 36: 55–73

    Article  Google Scholar 

  12. Casamatta, DA, Verb, RG, Beaver, JR, Vis, ML (2002) An investigation of the cryptobiotic community from sandstone cliffs in southeast Ohio. Int J Plant Sci 163: 837–845

    Article  Google Scholar 

  13. Cockell, CS, McKay, CP, Omelon, C (2003) Polar endoliths—an anti-correlation of climate extremes and microbial diversity. Int J Astrobiol 1: 305–310

    Article  Google Scholar 

  14. Conca, JL, Rossman, GR (1982) Case hardening of sandstone. Geology 10: 520–523

    Article  CAS  Google Scholar 

  15. de los Rios, A, Wierzchos, J, Ascaso, C (2002) Microhabitats and chemical microenvironments under saxicolous lichens growing on granite. Microb Ecol 43: 181–188

    Article  PubMed  CAS  Google Scholar 

  16. de los Rios, A, Wierzchos, J, Sancho, LG, Ascaso, C (2003) Acid microenvironments in microbial biofilms of Antarctic endolithic microecosystems. Environ Microbiol 5: 231–237

    Article  PubMed  Google Scholar 

  17. de los Rios, A, Wierzchos, J, Sancho, LG, Ascaso, C (2004) Exploring the physiological state of continental Antarctic endolithic microorganisms by microscopy. FEMS Microbiol Ecol 50: 143–152

    Article  CAS  PubMed  Google Scholar 

  18. Dorn, RI (1998) Rock Coatings. Elsevier, Amsterdam, p 444

    Google Scholar 

  19. Ferris, FG, Lowson, EA (1997) Ultrastructure and geochemistry of endolithic microorganisms in limestone of the Niagara Escarpment. Can J Microbiol 43: 211–219

    Article  CAS  Google Scholar 

  20. Fewer, DJ, Friedl, T, Budel, B (2002) Chroococcidiopsis and heterocyst-differentiating cyanobacteria are each other’s closest living relatives. Mol Phylogenet Evol 23: 82–90

    Article  PubMed  CAS  Google Scholar 

  21. Friedmann, EI (1982) Endolithic microorganisms in the Antarctic cold desert. Science 215: 1045–1053

    Article  PubMed  Google Scholar 

  22. Friedmann, EI, Ocampo, R (1976) Endolithic blue-green algae in the dry valleys: Primary producers in the Antarctic desert ecosystem. Science 193: 1274–1279

    Article  Google Scholar 

  23. Friedmann, EI, Ocampo-Friedmann, R (1984) Endolithic microorganisms in extreme dry environments: Analysis of a lithobiontic habitat. In: Klug, MJ, Reddy, CA (Eds.) Current Perspectives in Microbiology, American Society of Microbiology, Washington, DC, pp 177–185

    Google Scholar 

  24. Friedmann, EI, Weed, R (1987) Microbial trace-fossil formation, biogenous, and abiotic weathering in the Antarctic Cold Desert. Science 236: 703–705

    Article  PubMed  CAS  Google Scholar 

  25. Friedmann, EI, Kappen, L, Garty, J (1980) Fertile stages of cryptoendolithic lichens in the dry valleys of Southern Victoria Land. Antarct J US 15: 166–167

    Google Scholar 

  26. Friedmann, EI, Friedmann, RO, McKay, CP (1981) Adaptations of cryptoendolithic lichens in the Antarctic desert. In: Jouventin, P, Masse, L, Trehen, P (Eds.) Colloque sur les Ecosystemes Subantarctiques, Comite National Francais des Recherches Antarctiques, Paris, pp 65–70

    Google Scholar 

  27. Friedmann, EI, McKay, CP, Nienow, JA (1987) The cryptoendolithic microbial environment in the Ross Desert of Antarctica: satellite-transmitted continuous nanoclimate data, 1984 to 1986. Polar Biol 7: 273–287

    Article  PubMed  CAS  Google Scholar 

  28. Friedmann, EI, Hua, M, Ocampo-Friedman, R (1988) Cryptoendolithic lichen and cyanobacterial communities of the Ross Desert, Antarctica. Polarforschung 58: 251–259

    PubMed  CAS  Google Scholar 

  29. Gerrath, JF, Gerrath, JA, Matthes, U, Larson, DW (2000) Endolithic algae and cyanobacteria from cliffs of the Niagara Escarpment, Ontario, Canada. Can J Bot 78: 807–815

    Article  Google Scholar 

  30. Hirsch, P, Hoffmann, B, Gallikowski, CC, Mevs, U, Siebert, J, Sittig, M (1988) Diversity and identification of heterotrophs from Antarctic rocks of the McMurdo Dry Valleys (Ross Desert). Polarforschung 58: 261–269

    Google Scholar 

  31. Hirsch, P, Mevs, U, Kroppenstedt, RM, Schumann, P, Stackebrandt, E (2004) Cryptoendolithic actinomycetes from Antarctic sandstone rock samples: Micromonospora endolithica sp. nov. and two isolates related to Micromonospora coerulea Jensen 1932. Syst Appl Microbiol 27: 166–174

    Article  PubMed  CAS  Google Scholar 

  32. Hughes, KA, Lawley, B (2003) A novel Antarctic microbial endolithic community within gypsum crusts. Environ Microbiol 5: 555–565

    Article  PubMed  Google Scholar 

  33. Johnston, CG, Vestal, JR (1986) Does iron inhibit cryptoendolithic communities? Antarct J US 21: 225–226

    Google Scholar 

  34. Johnston, CG, Vestal, JR (1989) Distribution of inorganic species in two Antarctic cryptoendolithic microbial communities. Geomicrobiol J 7: 137–153

    Article  PubMed  CAS  Google Scholar 

  35. Johnston, CG, Vestal, JR (1993) Biogeochemistry of oxalate in the Antarctic cryptoendolithic lichen-dominated community. Microb Ecol 25: 305–319

    Article  CAS  Google Scholar 

  36. Lewkowicz, AG (1998) Aeolian sediment transport during winter, Black Top Creek, Fosheim Peninsula, Ellesmere Island, Canadian Arctic. Permafrost Periglacial Process 9: 35–46

    Article  Google Scholar 

  37. Li, Z, McLaren, RG, Metherell, AK (2001) Cobalt and manganese relationships in New Zealand soils. N Z J Agric Res 44: 191–200

    CAS  Google Scholar 

  38. McKay, CP, Friedmann, EI, Gomez-Silva, B, Caceres-Villanueva, L, Andersen, DT, Landheim, R (2003) Temperature and moisture conditions for life in the extreme arid region of the Atacama desert: four years of observations including the El Niño of 1997–1998. Astrobiology 3: 393–406

    Article  PubMed  CAS  Google Scholar 

  39. Nienow, JAC, McKay, CP, Friedmann, EI (1988) The cryptoendolithic microbial environment in the Ross desert of Antarctica: light in the photosynthetically active region. Microb Ecol 16: 271–289

    Article  PubMed  CAS  Google Scholar 

  40. Omelon, CR, Pollard, WH, Ferris, FG (2006) Chemical and ultrastructural characterization of high Arctic cryptoendolithic habitats. Geomicrobiol J 23: 189–200

    Article  CAS  Google Scholar 

  41. Omelon, CR, Pollard, WH, Ferris, FG (2006) Environmental controls on microbial colonization of high Arctic cryptoendolithic habitats. Polar Biol 30: 19–29

    Article  Google Scholar 

  42. Orhan, H (1992) Importance of dust storms in the diagenesis of sandstones: a case study, Entrada sandstone in the Ghost Ranch area, New Mexico, USA. Sediment Geol 77: 111–122

    Article  Google Scholar 

  43. Selbmann, L, de Hoog, GS, Mazzagalia, A, Friedman, EI, Onofri, S (2005) Fungi at the edge of life: cryptoendolithic black fungi from Antarctic desert. Stud Mycol 51: 1–32

    Google Scholar 

  44. Sigler, WV, Bachofen, R, Zeyer, J (2003) Molecular characterization of endolithic cyanobacteria inhabiting exposed dolomite in central Switzerland. Environ Microbiol 5: 618–627

    Article  PubMed  CAS  Google Scholar 

  45. Viles, HA, Goudie, AS (2004) Biofilms and case hardening on sandstones from Al–Quwayra, Jordan. Earth Surf Process Landf 29: 1473–1485

    Article  CAS  Google Scholar 

  46. Wierzchos, J, Ascaso, C (2001) Life, decay and fossilisation of endolithic microorganisms from the Ross Desert, Antarctica: suggestions for in situ further research. Polar Biol 24: 836–868

    Article  Google Scholar 

  47. Wierzchos, J, Ascaso, C (2002) Microbial fossil record of rocks from the Ross Desert, Antarctica: implications in the search for past life on Mars. Int J Astrobiol 1: 51–59

    Article  Google Scholar 

  48. Wierzchos, J, Ascaso, C, Sancho, LG, Green, A (2003) Iron-rich diagenetic minerals are biomarkers of microbial activity in Antarctic rocks. Geomicrobiol J 20: 15–24

    Article  CAS  Google Scholar 

  49. Wierzchos, J, Sancho, LG, Ascaso, C (2005) Biomineralization of endolithic microbes in rocks from the McMurdo Dry Valleys of Antarctica: implications for microbial fossil formation and their detection. Environ Microbiol 7: 566–575

    Article  PubMed  CAS  Google Scholar 

  50. Wynn-Williams, DD (2000) Cyanobacteria in deserts—life at the limit? In: Whitton, BA, Potts, M (Eds.) Ecology of Cyanobacteria: Their Diversity in Time and Space, Kluwer, Dordrecht, pp 341–366

    Google Scholar 

  51. Young, RW (1987) Sandstone landforms of the tropical East Kimberley region, Northwestern Australia. J Geol 95: 205–218

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Canada’s Atmospheric Environment Service and the Polar Continental Shelf Project (PCSP manuscript no. 010-06) for lodging and logistical support during field seasons. This work is conducted under Nunavut Research Institute Scientific Research license no. 0201502N-M and is supported by Canada’s Natural Sciences and Engineering Research Council (F.G.F. and W.H.P.), ArcticNet (W.H.P.), the Ontario Graduate Scholarship Program, and the Northern Scientific Training Program (C.R.O.). The authors would like to thank Dr. Karen Nelson (editor), Dr. Christopher P. McKay, Dr. Derek Mueller and three anonymous reviewers for their constructive comments that improved the focus of the original manuscript, and we sincerely thank the staff of the Eureka Weather Station for their dedicated support and help throughout the duration of the research program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher R. Omelon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Omelon, C.R., Pollard, W.H. & Ferris, F.G. Inorganic Species Distribution and Microbial Diversity within High Arctic Cryptoendolithic Habitats. Microb Ecol 54, 740–752 (2007). https://doi.org/10.1007/s00248-007-9235-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-007-9235-0

Keywords

Navigation