Skip to main content
Log in

Distribution of Cren- and Euryarchaeota in Scots Pine Mycorrhizospheres and Boreal Forest Humus

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Archaeal 16S rRNA gene sequences have been found in a variety of moderate-temperature habitats including soil and rhizospheres. In this study, the differences of archaeal communities associated with Scots pine (Pinus sylvestris L.) short roots, different types of mycorrhizospheric compartments, and uncolonized boreal forest humus were tested by direct DNA extraction, polymerase chain reaction–denaturing gradient gel electrophoresis (PCR–DGGE), and sequencing. The results indicated that mycorrhizal colonization of Scots pine roots substantially influence the archaeal community of pine rhizospheres. Colonization of short roots by most mycorrhizal fungi tested increased both archaeal frequency and diversity. Most of the archaeal sequences encountered in mycorrhizas belonged to the phylum Euryarchaeota, order of Halobacteriales. The difference in archaeal diversity between the mycorrhizospheric compartments and humus was profound. Most compartments with fungal components contained euryarchaeotal 16S rRNA gene sequences, whereas a high diversity of crenarchaeotal sequences and no euryarchaeotal sequences were found in forest humus outside mycorrhizospheres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Hershberger, KL, Barns, SM, Reysenbach, AL, Dawson, SC, Pace, NR (1996) Wide diversity of Crenarchaeota. Nature 384: 420

    Article  PubMed  CAS  Google Scholar 

  2. Jurgens, G, Lindström, K, Saano, A (1997) Novel group within the kingdom Crenarchaeota from boreal forest soil. Appl Environ Microbiol 63: 803–805

    PubMed  CAS  Google Scholar 

  3. Großkopf, R, Stubner, S, Liesack, W (1998) Novel euryarchaeotal lineages detected on rice roots and in the anoxic bulk soil of flooded rice microcosms. Appl Environ Microbiol 64: 4983–4989

    Google Scholar 

  4. Jurgens, G, Saano, A (1999) Diversity of soil Archaea in boreal forest before, and after clear-cutting and prescribed burning. FEMS Microbiol Ecol 29: 205–213

    CAS  Google Scholar 

  5. Simon, HM, Dodsworth, JA, Goodman, RM (2000) Crenarchaeota colonize terrestrial plant roots. Environ Microbiol 2: 495–505

    Article  PubMed  CAS  Google Scholar 

  6. Chelius, MK, Triplett, EW (2001) The diversity of Archaea and Bacteria in association with the roots of Zea mays L. Microb Ecol 41: 252–263

    PubMed  CAS  Google Scholar 

  7. Pesaro, M, Widmer, F (2002) Identification of novel Crenarchaeota and Euryarchaeota clusters associated with different depth layers of a forest soil. FEMS Microbiol Ecol 42: 89–98

    Article  CAS  Google Scholar 

  8. Bomberg, M, Jurgens, G, Saano, A, Sen, R, Timonen, S (2003) Nested PCR detection of Archaea in defined compartments of pine mycorrhizospheres developed in boreal forest humus microcosms. FEMS Microb Ecol 43: 163–171

    Article  CAS  Google Scholar 

  9. Nicol, GW, Glover, LA, Prosser, JI (2003) Spatial analysis of archaeal community structure in grassland soil. Appl Environ Microbiol 69: 7420–7429

    Article  PubMed  CAS  Google Scholar 

  10. Ochsenreiter, T, Selezi, D, Quaiser, A, Bonch-Osmolovskaya, L, Schleper, C (2003) Diversity and abundance of Crenarchaeota in terrestrial habitats studied by 16S RNA surveys and real time PCR. Environ Microbiol 5: 787–797

    Article  PubMed  CAS  Google Scholar 

  11. Sliwinski, MK, Goodman, RM (2004) Spatial heterogeneity of crenarchaeal assemblages within mesophilic soil ecosystems as revealed by PCR-single-stranded conformation polymorphism profiling. Appl Environ Microbiol 70: 1811–1820

    Article  PubMed  CAS  Google Scholar 

  12. Yrjälä, K, Katainen, R, Jurgens, G, Saarela, U, Saano, A, Romantchuk, M, Fritze, H (2004) Wood ash fertilization alters the forest humus Archaea community. Soil Biol Biochem 36: 199–201

    Article  Google Scholar 

  13. Buckley, DH, Graber, JR, Schmidt, TM (1998) Phylogenetic analysis of nonthermophilic members of the kingdom crenarchaeota and their diversity and abundance in soils. Appl Environ Microbiol 64: 4333–4339

    PubMed  CAS  Google Scholar 

  14. Elshahed, MS, Najar, FZ, Roe, BA, Oren, A, Dewers, TA, Krumholz, LR (2004) Survey of archaeal diversity reveals an abundance of halophilic Archaea in a low-salt, sulfide- and sulfur-rich spring. Appl Environ Microbiol 70: 2230–2239

    Article  PubMed  CAS  Google Scholar 

  15. Purdy, KJ, Cresswell-Maynard, TD, Nedwell, DB, McGenity, TJ, Grant, WD, Timmis, KN, Embley, TM (2004) Isolation of haloarchaea that grow at low salinities. Environ Microbiol 6: 591–595

    Article  PubMed  CAS  Google Scholar 

  16. Sen, R (1990) Intraspecific variation in two species of Suillus from Scots pine (Pinus sylvestris L.) forests based on somatic incompatibility and isozyme analysis. New Phytol 114: 607–616

    Article  CAS  Google Scholar 

  17. Giovannoni, SJ, DeLong, EF, Olsen, GJ, Pace, NR (1988) Phylogenetic group-specific oligodeoxynucleotide probes for identification of single microbial cells. J Bacteriol 170: 720–726

    PubMed  CAS  Google Scholar 

  18. Stahl, DA, Amann, R (1991) Development and application of nucleic acid probes in bacterial systematics. In: Stackebrandt, E, Goodfellow, M (Eds.) Nucleic Acid Techniques in Bacterial Systematics, 1st edn., John Wiley & Sons Ltd, Chichester, pp 205–248

    Google Scholar 

  19. Sambrook, J, Fritsch, FE, Maniatis, T (2001) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  20. Peters, S, Koschinsky, S, Schwieger, F, Tebbe, CC (2000) Succession of microbial communities during hot composting as detected by PCR-single-strand-conformation polymorphism-based genetic profiles of small-subunit rRNA genes. Appl Environ Microbiol 66: 930–936

    Article  PubMed  CAS  Google Scholar 

  21. Jurgens, G, Glockner, F, Amann, R, Saano, A, Montonen, L, Likolammi, M, Munster, U (2000) Identification of novel Archaea in bacterioplankton of a boreal forest lake by phylogenetic analysis and fluorescent in situ hybridization. FEMS Microbiol Ecol 34: 45–56

    PubMed  CAS  Google Scholar 

  22. Rincón, B, Raposo, F, Borja, R, Gonzalez, JM, Portillo, MC, Saiz-Jimenez, C (2006) Performance and microbial communities of a continuous stirred tank anaerobic reactor treating two-phases olive mill solid wastes at low organic loading rates. J Biotechnol 121: 534–543

    Article  PubMed  Google Scholar 

  23. Swofford, DL (2003) PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Sinauer Associates, Sunderland, MA, USA

    Google Scholar 

  24. Nixon, K (2002) WinClada. Version 1.00.08. Published by the author, Ithaca, New York

  25. Hammer, Ø, Harper, DAT, Ryan, PD (2001) PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica 4(1): 9pp http://palaeo-electronica.org/2001_1/past/issue1_01.htm

  26. DeLong, EF (1998) Everything in moderation: archaea as ‘non-extremophiles’. Curr Opin Genet Dev 8: 649–654

    Article  PubMed  CAS  Google Scholar 

  27. Smith, SE, Read, DJ (1997) Mycorrhizal Symbiosis. Academic Press, London, p 605

    Google Scholar 

  28. Timonen, S, Marschner, P (2006) Mycorrhizosphere concept. In: Mukerji, KG, Manoharachary, C, Singh, J (Eds.) Microbial Activity in the Rhizosphere, Springer Verlag, pp 155–172

  29. Timonen, S, Jørgensen, KS, Haahtela, K, Sen, R (1998) Bacterial community structure at defined locations of Pinus sylvestrisSuillus bovinus and –Paxillus involutus mycorrhizospheres in dry pine forest humus and nursery peat. Can J Microbiol 44: 499–513

    Article  CAS  Google Scholar 

  30. Strzelczyk, E, Dahm, H, Kampert, M, Pokojska, A, Rozycki, H (1987) Activity of bacteria and actinomycetes associated with mycorrhiza of pine (Pinus sylvestris L.). Angew Bot 61: 53–64

    Google Scholar 

  31. Poole, EJ, Bending, GD, Whipps, JM, Read, DJ (2001) Bacteria associated with Pinus sylvestrisLactarius rufus ectomycorrhizas and their effects on mycorrhiza formation in vitro. New Phytol 151: 743–751

    Article  Google Scholar 

  32. Timonen, S, Hurek, T (2006) Characterisation of bacterial populations associating with Pinus sylvestrisSuillus bovinus mycorrhizospheres. Can J Microbiol 52: 769–778

    Article  PubMed  CAS  Google Scholar 

  33. Nicol, GW, Tscherko, D, Embley, TM, Prosser, JI (2005) Primary succession of soil Crenarchaeota across a receding glacier foreland. Environ Microbiol 7: 337–347

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The Maj and Tor Nessling Foundation, Svenska Kulturfonden, University of Helsinki and Academy of Finland are thanked for financial support. Dr. Paula Kristo is thanked for her expert help in sequencing and Dr. Jodie Painter for her constructive comments on the manuscript. We also wish to warmly thank Professor Jari Valkonen for providing us with excellent working environment both in atmosphere and equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sari Timonen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bomberg, M., Timonen, S. Distribution of Cren- and Euryarchaeota in Scots Pine Mycorrhizospheres and Boreal Forest Humus. Microb Ecol 54, 406–416 (2007). https://doi.org/10.1007/s00248-007-9232-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-007-9232-3

Keywords

Navigation