Skip to main content

Presence of Wolbachia in Insect Eggs Containing Antimicrobially Active Anthraquinones

Abstract

Wolbachia are obligatory, cytoplasmatically inherited α-proteobacteria, which are common endosymbionts in arthropods where they may cause reproductive abnormalities. Many insects are well known to protect themselves from deleterious microorganisms by antibiotic components. In this study, we addressed the question whether Wolbachia are able to infect insects containing antimicrobial anthraquinones and anthrones, and if so, whether these genotypes of Wolbachia comprise a monophyletic cluster within one of the known supergroups. Leaf beetles of the taxon Galerucini (Galerucinae) are known to contain 1,8-dihydroxylated anthraquinones and anthrones. Also, the scale insect Dactylopius contains an anthraquinone glycoside, carminic acid. Our analyses revealed that a representative of the Galerucini, Galeruca tanaceti and Dactylopius, are indeed infected by endosymbiotic Wolbachia bacteria.Phylogenetic analysis of the wsp and ftsZ genes of these bacteria revealed that strains in G. tanaceti cluster in supergroup A, whereas those present in Dactylopius are distinctive from each other and from those of G. tanaceti. They are clustering in supergroups A and B. Wolbachia strains present in close, but anthraquinone-free relatives of G. tanaceti were shown to belong also to supergroup A. From these results, we can conclude (1) a double infection in Dactylopius, (2) that the presence of antimicrobial compounds such as anthraquinones does not necessarily protect insects from infection by Wolbachia, and (3) that genotypes of Wolbachia-infecting anthraquinone-containing insects most likely do not comprise a unique genotype. These results show that Wolbachia bacteria might be adapted to cope even with conditions usually detrimental to other bacteria and that these adaptations are widespread among Wolbachia supergroups.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2

References

  1. Alves, DS, Pérez-Fons, L, Estepa, A, Micol, V (2004) Membrane-related effects underlying the biological activity of the anthraquinones emodin and barbaloin. Biochem Pharmacol 68: 549–561

    PubMed  Article  CAS  Google Scholar 

  2. Baldo, L, Lo, N, Werren, JH (2005) Mosaic nature of the Wolbachia surface protein. J Bacteriol 187: 5406–5418

    PubMed  Article  CAS  Google Scholar 

  3. Baldo, L, Bordenstein, S, Wernegreen, JJ, Werren, JH (2006) Widespread recombination throughout Wolbachia genomes. Mol Biol Evol 23: 437–449

    PubMed  Article  CAS  Google Scholar 

  4. Blum, MS, Hilker, M (2002) Chemical protection of insect eggs. In: Hilker, M, Meiners, T (Eds.) Chemoecology of Insect Eggs and Egg Deposition, Blackwell Publishing, Berlin, pp 61–90

    Google Scholar 

  5. Bordenstein, S, Rosengaus, RB (2005) Discovery of a novel Wolbachia supergroup in Isoptera. Curr Microbiol 51: 393–398

    PubMed  Article  CAS  Google Scholar 

  6. Braig, HR, Zhou, W, Dobson, SL, O’Neill, SL (1998) Cloning and characterization of a gene encoding the major surface protein of the bacterial endosymbiont Wolbachia pipientis. J Bacteriol 180: 2373–2378

    PubMed  CAS  Google Scholar 

  7. Breeuwer, JAJ, Stouthamer, R, Barns, SM, Pelletier, DA, Weisburg, WG, Werren, JH (1992) Phylogeny of cytoplasmic incompatibility micro-organisms in the parasitoid wasp genus Nasonia (Hymenoptera: Pteromalidae) based on 16S ribosomal DNA sequences. Insect Mol Biol 1: 25–36

    PubMed  CAS  Google Scholar 

  8. Casiraghi, MC, Bain, O, Guerrero, R, Martin, C, Pocacqua, V, Gardner, SL, Franceschi, A, Bandi, C (2004) Mapping the presence of Wolbachia pipientis on the phylogeny of filarial nematodes: evidence for symbiont loss during evolution. Int J Parasitol 34: 191–203

    PubMed  Article  Google Scholar 

  9. Cudlin, J, Blumauerova, M, Steinerova, N, Mateju, J, Zalabak, V (1976) Biological activity of hydroxyanthraquinones and their glucosides towards microorganisms. Folia Microbiol 21: 54–57

    CAS  Google Scholar 

  10. Czarnetzki, AB, Tebbe, CC (2004) Detection and phylogenetic analysis of Wolbachia in Collembola. Environ Microbiol 6: 35–44

    PubMed  Article  CAS  Google Scholar 

  11. Eisner, T, Nowicki, S, Goetz, M, Meinwald, J (1980) Red cochineal dye (carminic acid): its role in nature. Science 208: 1039–1042

    PubMed  Article  CAS  Google Scholar 

  12. Eisner, T, Ziegler, R, McCormick, JL, Eisner, M, Hoebeke, ER, Meinwald, J (1994) Defensive use of an acquired substance (carminic acid) by predaceous insect larvae. Experientia 50: 610–615

    PubMed  Article  CAS  Google Scholar 

  13. Fenollar, F, Maurin, M, Raoult, D (2003) Wolbachia pipientis growth kinetics and susceptibilities to 13 antibiotics determined by immunofluorescence staining and real-time PCR. Antimicrob Agents Chemother 47: 1665–1671

    PubMed  Article  CAS  Google Scholar 

  14. Ferguson, JE, Metcalf, RL, Fischer, DC (1985) Disposition and fate of cucurbitacin B in five species of diabroticites. J Chem Ecol 11: 1307–1321

    Article  CAS  Google Scholar 

  15. Finch, R, Greenwood, D, Norrby, SR, Whitley, RJ (2003) Antibiotic and Chemotherapy: Anti-infective Agents and Their Use in Therapy. Churchill Livingston, Edinburgh

    Google Scholar 

  16. Gálvez, J, Gomez-Lechón, MJ, Garcia-Domeneche, R, Castell, JV (1996) New cytostatic agents obtained be molecular topology. Bioorg Med Chem Lett 6: 2301–2306

    Article  Google Scholar 

  17. Gill, SR, Fouts, DE, Archer, GL, Mongodin, EF, DeBoy, RT, Ravel, J, Paulsen, IT, Kolanay, JF, Beanan, M, Dodson, RJ, et al. (2005) Insights on evolution of virulence and resistance from the complete genome analysis of an early methicillin-resistant Staphylococcus aureus strain and a biofilm-producing methicillin-resistant Staphylococcus epidermis strain. J Bacteriol 187: 2426–2438

    PubMed  Article  CAS  Google Scholar 

  18. Giordano, R, Jackson, JJ, Robertson, HM (1997) The role of Wolbachia bacteria in reproductive incompatibilities and hybrid zones of Diabrotica beetles and Gryllus crickets. Proc Natl Acad Sci U S A 94: 11439–11444

    PubMed  Article  CAS  Google Scholar 

  19. Hilker, M, Köpf, A (1995) Evaluation of the palatability of chrysomelid larvae containing anthraquinones to birds. Oecologia 100: 421–429

    Article  Google Scholar 

  20. Hilker, M, Schulz, S (1991) Anthraquinones in different developmental stages of Galeruca tanaceti (Coleoptera: Chrysomelidae). J Chem Ecol 17: 2323–2332

    Article  CAS  Google Scholar 

  21. Hilker, M, Eschbach, U, Dettner, K (1992) Occurrence of anthraquinones in eggs and larvae of several Galerucinae (Coleoptera: Chrysomelidae). Naturwissenschaften 79: 271–274

    Article  CAS  Google Scholar 

  22. Holden, PR, Brookfield, JFY, Jones, P (1993) Cloning and characterization of an ftsZ homologue from a bacterial symbiont of Drosophila melanogaster. Mol Gen Genet 240: 213–220

    PubMed  Article  CAS  Google Scholar 

  23. Howard, DF, Phillips, DW, Jones, TH, Blum, MS (1982) Anthraquinones and anthrones: occurrence and defensive function in a chrysomelid beetle. Naturwissenschaften 69: 91–92

    Article  CAS  Google Scholar 

  24. Hurst, GDD, Jiggins, FM, Schulenberg, JHG, Bertrand, D, West, SA, Goriacheva, II, Zakharov, IA, Werren, JH, Stouthamer, R, Majerus, MEN (1999) Male-killing Wolbachia in two species of insect. Proc R Soc Lond B 266: 735–740

    Article  Google Scholar 

  25. Izhaki, I (2002) Emodin—a secondary metabolite with multiple ecological functions in higher plants. New Phytol 155: 205–217

    Article  CAS  Google Scholar 

  26. Jeyaprakash, A, Hoy, MA (2000) Long PCR improves Wolbachia DNA amplification: wsp sequences found in 76% of sixty-three arthropod species. Insect Mol Biol 9: 393–405

    PubMed  Article  CAS  Google Scholar 

  27. Kambizi, L, Sultana, N, Afolayan, AJ (2004) Bioactive compounds isolated from Aloe ferox: a plant traditionally used for the treatment of sexually transmitted infections in the Eastern Cape, South Africa. Pharm Biol 42: 636–639

    Article  CAS  Google Scholar 

  28. Kenny, MT, Strates, B (1981) Metabolism and pharmacokinetics of the antibiotic rifampin. Drug Metab Rev 12: 159–218

    PubMed  CAS  Google Scholar 

  29. Kondo, N, Ijichi, N, Shimada, M, Fukatsu, T (2002) Prevailing triple infection with Wolbachia in Callosobruchus chinensis (Coleoptera: Bruchidae). Mol Ecol 11: 167–180

    PubMed  Article  CAS  Google Scholar 

  30. Koukou, K, Pavlikaki, H, Kilias, G, Werren, JH, Bourtzis, K, Alahiotis, SN (2006) Influence of antibiotic treatment and Wolbachia curing on sexual isolation among Drosophila melanogaster cage populations. Evolution 60: 87–96

    PubMed  Google Scholar 

  31. Kunze, A, Witte, L, Aregullin, M, Rodriguez, E, Proksch, P (1996) Anthraquinones in the leaf beetle Trirhabda geminata (Chrysomelidae). Z Naturforsch C 51: 249–252

    CAS  Google Scholar 

  32. Le Van, T (1984) Emodin a fungal metabolite and the effects of emodin on the growth of some soil microorganisms. Acta Agrar Silv Ser Agrar 23: 235–242

    Google Scholar 

  33. Levin, H, Hazenfrantz, R, Friedman, J, Perl, M (1988) Partial purification and some properties of the antibacterial compounds from Aloe vera. Phytother Res 1: 1–3

    Google Scholar 

  34. Lo, N, Casiraghi, M, Salatis, E, Bazzocchi, C, Bandi, C (2002) How many Wolbachia super-groups exist. Mol Biol Evol 19: 341–346

    PubMed  CAS  Google Scholar 

  35. Lognay, G, Hemptinne, J-L, Chan, YY, Gaspar, CH, Marlier, M, Braekman, JC, Daloze, D, Pasteels, JM (1996) Adalinine, a new piperidine alkaloid from the ladybird beetles Adalia bipunctata and Adalia decempunctata. J Nat Prod 59: 510–511

    Article  CAS  Google Scholar 

  36. Louis, C, Nigro, L (1989) Ultrastructural evidence of Wolbachia Rickettsiales in Drosophila simulans and their relationship with unidirectional cross-incompatibility. J Invert Pathol 54: 39–44

    Article  Google Scholar 

  37. Malloch, G, Fenton, B (2005) Super-infections of Wolbachia in byturid beetles and evidence for genetic transfer between A an B super-groups of Wolbachia. Mol Ecol 14: 627–637

    PubMed  Article  CAS  Google Scholar 

  38. Manojlovic, NT, Solujic, S, Sukdolak, S, Krstic, LJ (2000) Isolation and antimicrobial activity of anthraquinones from some species of the lichen genus Xanthoria. J Serb Chem Soc 65: 555–560

    CAS  Google Scholar 

  39. Miller, WJ, Riegler, M (2006) Evolutionary dynamics of wAu-like Wolbachia variants in neotropical Drosophila spp. Appl Environ Microbiol 72: 826–835

    PubMed  Article  CAS  Google Scholar 

  40. Narita, S, Nomura, M, Kato, Y, Fukatsu, T (2006) Genetic structure of sibling butterfly species affected by Wolbachia infection sweep: evolutionary and biogeographical implications. Mol Ecol 15: 1095–1108

    PubMed  CAS  Article  Google Scholar 

  41. Oh, HW, Kim, MG, Shin, SW, Bae, KS, Ahn, YJ, Park, HY (2000) Ultrastructural and molecular identification of a Wolbachia endosymbiont in a spider, Nephila clavata. Insect Mol Biol 9: 539–543

    PubMed  Article  CAS  Google Scholar 

  42. O’Neill, SL, Hoffmann, AA, Werren, JH (1997) Influential Passengers. Inherited Microorganisms and Arthropod Reproduction. Oxford University Press, Oxford

    Google Scholar 

  43. O’Neill, SL, Giordano, R, Colbert, AM, Karr, TL, Robertson, HM (1992) 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proc Natl Acad Sci U S A 89: 2699–2702

    PubMed  Article  CAS  Google Scholar 

  44. Pankewitz, F, Hilker, M (2006) Defensive components in insect eggs: are anthraquinones produced during egg development? J Chem Ecol 32: 2067–2072

    PubMed  Article  CAS  Google Scholar 

  45. Riond, JL, Riviere, JE (1988) Pharmacology and toxicology of doxycycline. Vet Hum Toxicol 30: 431–443

    PubMed  CAS  Google Scholar 

  46. Rowley, SM, Raven, RJ, McGraw, EA (2004) Wolbachia pipientis in Australian spiders. Curr Microbiol 49: 208–214

    PubMed  Article  CAS  Google Scholar 

  47. Shoemaker, DD, Machado, CA, Molbo, D, Werren, JH, Windsor, DM, Herre, EA (2002) The distribution of Wolbachia in fig wasps: correlations with host phylogeny, ecology and population structure. Proc R Soc Lond B 269: 2257–2267

    Article  Google Scholar 

  48. Stouthamer, R, Breeuwer, JAJ, Hurst, GD (1999) Wolbachia pipientis: microbial manipulator of arthropod reproduction. Annu Rev Microbiol 53: 71–102

    PubMed  Article  CAS  Google Scholar 

  49. Swofford, DL (2000) PAUP. Phylogenetic Analysis Using Parsimony (and Other Methods), Version 4.0b8. Sinauer Associates, Sunderland

    Google Scholar 

  50. Teuscher, E, Lindequist, U (1994) Biogene Gifte. Gustav Fischer, Stuttgart

    Google Scholar 

  51. Van Meer, MM, Witteveldt, J, Stouthamer, R (1999) Phylogeny of the arthropod endosymbiont Wolbachia based on the wsp gene. Insect Mol Biol 8: 399–408

    PubMed  Article  Google Scholar 

  52. Werren, JH (1998) Wolbachia and speciation. In: Howard, D, Berlocher, S (Eds.) Endless Forms: Species and Speciation, Oxford University Press, New York, pp 245–260

    Google Scholar 

  53. Werren, JH, Windsor, DM, Guo, L (1995) Distribution of Wolbachia among Neotropical arthropods. Proc R Soc Lond B 262: 197–204

    Article  Google Scholar 

  54. Werren, JH, Zhang, W, Guo, L (1995) Evolution and phylogeny of Wolbachia: reproductive parasites of arthropods. Proc R Soc Lond B 261: 55–63

    Article  CAS  Google Scholar 

  55. Wink, M, Schimmer, O (1999) Modes of action of defensive secondary metabolites. In: Wink, M (Eds.) Functions of Plant Secondary Metabolites and their Exploitation in Biotechnology, Academic Press, New York, pp 17–133

    Google Scholar 

  56. Wu, M, Sun, LV, Vamathevan, J, Riegler, M, Deboy, R, Brownlie, JC, McGraw, EA, Martin, W, Esser, C, Ahmadinejad, N, et al. (2004) Phylogenomics of the reproductive parasite Wolbachia pipientis wMel: a streamlined genome overrun by mobile genetic elements. PLoS Biol 2: 327–341

    Article  CAS  Google Scholar 

  57. Zhou, W, Rousset, F, O’Neill, S (1998) Phylogeny and PCR-based classification of Wolbachia strains using wsp gene sequences. Proc R Soc Lond B 265: 509–515

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We thank Torsten Meiners (Freie Universität Berlin, Germany) for providing elm leaf beetles and Janine Fröhlich (Humboldt University Berlin, Germany) for technical assistance. Funding for this work was provided by the Deutsche Forschungsgemeinschaft, Gr 1467/6-1, 2 to Yvonne Gräser and Hi 416/16-1, 2 to Monika Hilker.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yvonne Gräser.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pankewitz, F., Zöllmer, A., Hilker, M. et al. Presence of Wolbachia in Insect Eggs Containing Antimicrobially Active Anthraquinones. Microb Ecol 54, 713–721 (2007). https://doi.org/10.1007/s00248-007-9230-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-007-9230-5

Keywords

  • Alni
  • Anthraquinone
  • Emodin
  • Anthrones
  • Scale Insect