Skip to main content

Advertisement

Log in

Establishment and Early Succession of a Multispecies Biofilm Composed of Soil Bacteria

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Most soil bacteria are likely to be organized in biofilms on roots, litter, or soil particles. Studies of such biofilms are complicated by the many nonculturable species present in soil, as well as the interspecific bacterial interactions affecting biofilm biology. We in this study describe the development of a biofilm flow model and use this system to establish an early (days 1–7) flow biofilm of soil bacteria from agricultural soil. It was possible to follow the succession in the early flow biofilm by denaturing gradient gel electrophoresis (DGGE) analysis, and it was demonstrated that the majority of strains present in the biofilm were culturable. We isolated and identified nine strains, all associated with unique DGGE profiles, and related their intrinsic phenotypes regarding monospecies biofilm formation in microtiter plates and planktonic growth characteristics to the appearance of the strains in the flow biofilm. The ability of the strains to attach to and establish biofilm in microtiter plates was reflected in their flow biofilm appearance, whereas no such reflection of the planktonic growth characteristics in the flow biofilm appearance was observed. One strain-specific synergistic interaction, strongly promoting biofilm formation of two strains when cultured together in a dual-species biofilm, was observed, indicating that some strains promote biofilm formation of others. Thus, the biofilm flow model proved useful for investigations of how intrinsic phenotypic traits of individual species affect the succession in an early soil biofilm consortium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Almås, AR, Mulder, J, Bakken, LR (2005) Trace metal exposure of soil bacteria depends on their position in the soil matrix. Environ Sci Technol 39: 5927–5932

    Article  PubMed  CAS  Google Scholar 

  2. Altschul, SF, Madden, TL, Schaffer, AA, Zhang, J, Zhang, Z, Miller, W, Lipman, DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402

    Article  PubMed  CAS  Google Scholar 

  3. Amann, RI, Ludwig, W, Schleifer, KH (1995) Phylogenetic identification and in-situ detection of individual microbial cells without cultivation. Microbiol Rev 59: 143–169

    PubMed  CAS  Google Scholar 

  4. Burmølle, M, Hansen, LH, Oregaard, G, Sørensen, SJ (2003) Presence of N-acyl homoserine lactones in soil detected by a whole-cell biosensor and flow cytometry. Microb Ecol 45: 226–236

    Article  PubMed  CAS  Google Scholar 

  5. Burmølle, M, Hansen, LH, Sørensen, SJ (2006) Reporter gene technology in soil ecology; detection of bioavailability and microbial interactions. In: Nannipieri, P, Smalla, K (Eds.) Nucleic Acids and Proteins in Soil, Vol. 8. Springer, Berlin, pp 397–419

    Chapter  Google Scholar 

  6. Burmølle, M, Webb, JS, Rao, D, Hansen, LH, Sørensen, SJ, Kjelleberg, S (2006) Enhanced biofilm formation and increased resistance towards antimicrobial agents and bacterial invasion are caused by synergistic interactions in multi-species biofilms. Appl Environ Microbiol 72: 3916–3923

    Article  PubMed  CAS  Google Scholar 

  7. Christensen, BB, Haagensen, JA, Heydorn, A, Molin, S (2002) Metabolic commensalism and competition in a two-species microbial consortium. Appl Environ Microbiol 68: 2495–2502

    Article  PubMed  CAS  Google Scholar 

  8. Donlan, RM (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8: 881–890

    PubMed  Google Scholar 

  9. Egland, PG, Palmer, RJ, Jr., Kolenbrander, PE (2004) Interspecies communication in Streptococcus gordoniiVeillonella atypica biofilms: signaling in flow conditions requires juxtaposition. Proc Natl Acad Sci USA 101: 16917–16922

    Article  PubMed  CAS  Google Scholar 

  10. Filoche, SK, Anderson, SA, Sissons, CH (2004) Biofilm growth of Lactobacillus species is promoted by Actinomyces species and Streptococcus mutans. Oral Microbiol Immunol 19: 322–326

    Article  PubMed  CAS  Google Scholar 

  11. Foster, RC (1981) Polysaccharides in soil fabrics. Science 214: 665–667

    Article  CAS  PubMed  Google Scholar 

  12. Fujishige, NA, Kapadia, NN, Hirsch, AM (2006) A feeling for the micro-organism: structure on a small scale. Biofilms on plant roots. Bot J Linn Soc 150: 79–88

    Article  Google Scholar 

  13. Gans, J, Wolinsky, M, Dunbar, J (2005) Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309: 1387–1390

    Article  PubMed  CAS  Google Scholar 

  14. Ghigo, JM (2001) Natural conjugative plasmids induce bacterial biofilm development. Nature 412: 442–445

    Article  PubMed  CAS  Google Scholar 

  15. Hu, JY, Fan, Y, Lin, YH, Zhang, HB, Ong, SL, Dong, N, Xu, JL, Ng, WJ, Zhang, LH (2003) Microbial diversity and prevalence of virulent pathogens in biofilms developed in a water reclamation system. Res Microbiol 154: 623–629

    Article  PubMed  CAS  Google Scholar 

  16. Jackson, CR (2003) Changes in community properties during microbial succession. Okios 101: 444–448

    Article  Google Scholar 

  17. Jackson, CR, Churchill, PF, Roden, EE (2001) Successional changes in bacterial assemblage structure during epilithic biofilm development. Ecology 82: 555–566

    Article  Google Scholar 

  18. Jass, J, Roberts, SK, Lappin-Scott, HM (2002) Microbes and enzymes in biofilms. In: Burns, RG, Dick, RD (Eds.) Enzymes in the Environment. Activity, Ecology and Applications. Marcel Dekker Inc., New York, USA, pp 307–326

    Google Scholar 

  19. Lane, DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt, E, Goodfellow, M (Eds.) Nucleic Acid Techniques in Bacterial Systematics. John Wiley & Sons, Inc., New York, pp 115–174

    Google Scholar 

  20. Laue, BE, Jiang, Y, Chhabra, SR, Jacob, S, Stewart, GS, Hardman, A, Downie, JA, O’Gara, F, Williams, P (2000) The biocontrol strain Pseudomonas fluorescens F113 produces the Rhizobium small bacteriocin, N-(3-hydroxy-7-cis-tetradecenoyl)homoserine lactone, via HdtS, a putative novel N-acylhomoserine lactone synthase. Microbiology 146(Pt 10): 2469–2480

    PubMed  CAS  Google Scholar 

  21. Lünsdorf, H, Erb, RW, Abraham, WR, Timmis, KN (2000) ‘Clay hutches’: a novel interaction between bacteria and clay minerals. Environ Microbiol 2: 161–168

    Article  PubMed  Google Scholar 

  22. Lyautey E, Jackson, CR, Cayrou, J, Rols, JL, Garabetian, F (2005) Bacterial community succession in natural river biofilm assemblages. Microb Ecol 50: 589–601

    Article  PubMed  Google Scholar 

  23. Martiny, AC, Jørgensen, TM, Albrechtsen, HJ, Arvin, E, Molin, S (2003) Long-term succession of structure and diversity of a biofilm formed in a model drinking water distribution system. Appl Environ Microbiol 69: 6899–6907

    Article  PubMed  CAS  Google Scholar 

  24. Matz, C, Kjelleberg, S (2005) Off the hook—how bacteria survive protozoan grazing. Trends Microbiol 13: 302–307

    Article  PubMed  CAS  Google Scholar 

  25. McLean, RJ, Whiteley, M, Stickler, DJ, Fuqua, WC (1997) Evidence of autoinducer activity in naturally occurring biofilms. FEMS Microbiol Lett 154: 259–263

    Article  PubMed  CAS  Google Scholar 

  26. McNab, R, Ford, SK, El-Sabaeny, A, Barbieri, B, Cook, GS, Lamont, RJ (2003) LuxS-based signaling in Streptococcus gordonii: autoinducer 2 controls carbohydrate metabolism and biofilm formation with Porphyromonas gingivalis. J Bacteriol 185: 274–284

    Article  PubMed  CAS  Google Scholar 

  27. Muyzer, G, de Waal, EC, Uitterlinden, AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59: 695–700

    PubMed  CAS  Google Scholar 

  28. Parsek, MR, Greenberg, EP (2005) Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol 13: 27–33

    Article  PubMed  CAS  Google Scholar 

  29. Pearce, D, Bazin, MJ, Lynch, JM (1995) The rhizosphere as a biofilm. In: Lappin-Scott HM, Costerton JW (Eds.) Microbial Biofilms. Cambridge University Press, New York, USA, pp 207–220

    Google Scholar 

  30. Potera, C (1996) Biofilms invade microbiology. Science 273: 1795–1797

    Article  PubMed  CAS  Google Scholar 

  31. Rickard, AH, Gilbert, P, High, NJ, Kolenbrander, PE, Handley, PS (2003) Bacterial coaggregation: an integral process in the development of multi-species biofilms. Trends Microbiol 11: 94–100

    Article  PubMed  CAS  Google Scholar 

  32. Rickard, AH, Palmer, RJ, Jr., Blehert, DS, Campagna, SR, Semmelhack, MF, Egland, PG, Bassler, BL, Kolenbrander, PE (2006) Autoinducer 2: a concentration-dependent signal for mutualistic bacterial biofilm growth. Mol Microbiol 60: 1446–1456

    Article  PubMed  CAS  Google Scholar 

  33. Riedel, K, Hentzer, M, Geisenberger, O, Huber, B, Steidle, A, Wu, H, Høiby, N, Givskov, M, Molin, S, Eberl, L (2001) N-acylhomoserine-lactone-mediated communication between Pseudomonas aeruginosa and Burkholderia cepacia in mixed biofilms. Microbiology 147: 3249–3262

    PubMed  CAS  Google Scholar 

  34. Roberson, EB, Firestone, MK (1992) Relationship between desiccation and exopolysaccharide production in a soil Pseudomonas sp. Appl Environ Microbiol 58: 1284–1291

    PubMed  CAS  Google Scholar 

  35. Sandaa, R, Torsvik, VV, Enger, Ø, Daae, FL, Castberg, T, Hahn, D (1999) Analysis of bacterial communities in heavy metal-contaminated soils at different levels of resolution. FEMS Microbiol Ecol 30: 237–251

    Article  PubMed  CAS  Google Scholar 

  36. Santegoeds, CM, Ferdelman, TG, Muyzer, G, de Beer, D (1998) Structural and functional dynamics of sulfate-reducing populations in bacterial biofilms. Appl Environ Microbiol 64: 3731–3739

    PubMed  CAS  Google Scholar 

  37. Sharma, A, Inagaki, S, Sigurdson, W, Kuramitsu, HK (2005) Synergy between Tannerella forsythia and Fusobacterium nucleatum in biofilm formation. Oral Microbiol Immunol 20: 39–42

    Article  PubMed  CAS  Google Scholar 

  38. Sørensen, SJ, Bailey, M, Hansen, LH, Kroer, N, Wuertz, S (2005) Studying plasmid horizontal transfer in situ: a critical review. Nat Rev Microbiol 3: 700–710

    Article  PubMed  CAS  Google Scholar 

  39. Sørensen, SJ, Müller, AK, Hansen, LH, Rasmussen, LD, Lipthay, JR, Barkay, T (2002) Molecular methods for assessing and manipulating the diversity of microbial populations and processes. In: Burns, RG, Dick, RD (Eds.) Enzymes in the Environment. Activity, Ecology and Applications. Marcel Dekker Inc., New York, USA, pp 363–389

    Google Scholar 

  40. Stach, JEM, Burns, RG (2002) Enrichment versus biofilm culture: a functional and phylogenetic comparison of polycyclic aromatic hydrocarbon-degrading microbial communities. Environ Microbiol 4: 169–182

    Article  PubMed  Google Scholar 

  41. Steidle, A, Allesen-Holm, M, Riedel, K, Berg, G, Givskov, M, Molin, S, Eberl, L (2002) Identification and characterization of an N-acylhomoserine lactone-dependent quorum-sensing system in Pseudomonas putida strain IsoF. Appl Environ Microbiol 68: 6371–6382

    Article  PubMed  CAS  Google Scholar 

  42. Stewart, PS, Camper, AK, Handran, SD, Huang, C, Warnecke, M (1997) Spatial distribution and coexistence of Klebsiella pneumoniae and Pseudomonas aeruginosa in biofilms. Microb Ecol 33: 2–10

    Article  PubMed  Google Scholar 

  43. Sutherland, I (2001) Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147: 3–9

    PubMed  CAS  Google Scholar 

  44. Torsvik, V, Goksöyr, J, Daae, FL (1990) High diversity in DNA of soil bacteria. Appl Environ Microbiol 56: 782–787

    PubMed  CAS  Google Scholar 

  45. Ward, DM (1998) A natural species concept for prokaryotes. Curr Opin Microbiol 1:271–277

    Article  PubMed  CAS  Google Scholar 

  46. Waters, CM, Bassler, BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21: 319–346

    Article  PubMed  CAS  Google Scholar 

  47. Xavier, KB, Bassler, BL (2003) LuxS quorum sensing: more than just a numbers game. Curr Opin Microbiol 6: 191–197

    Article  PubMed  CAS  Google Scholar 

  48. Yamada, M, Ikegami, A, Kuramitsu, HK (2005) Synergistic biofilm formation by Treponema denticola and Porphyromonas gingivalis. FEMS Microbiol Lett 250: 271–277

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Professor Michael Kühl (Marine Biological Laboratory, University of Copenhagen) for the helpful discussions regarding the design of the flow biofilm model. Additionally, the authors are grateful to Karin Vestberg for the excellent technical assistance. The work was funded by a grant from the Danish Natural Science Council, Ref. 272-05-0325.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Søren J. Sørensen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burmølle, M., Hansen, L.H. & Sørensen, S.J. Establishment and Early Succession of a Multispecies Biofilm Composed of Soil Bacteria. Microb Ecol 54, 352–362 (2007). https://doi.org/10.1007/s00248-007-9222-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-007-9222-5

Keywords