Skip to main content
Log in

Allelopathic Effects of Toxic Haptophyte Prymnesium parvum Lead to Release of Dissolved Organic Carbon and Increase in Bacterial Biomass

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The haptophyte Prymnesium parvum has lytic properties, and it affects coexisting phytoplankton species through allelopathy. We studied the effect of P. parvum allelochemicals on the lysis of the nontoxic and nonaxenic cryptomonad Rhodomonas salina and the consequent release of dissolved organic carbon (DOC). Changes in production, cell density, and biomass of associated bacteria were measured over 12 h. Six different combinations of P. parvum and R. salina cultures, their cell- and bacteria-free filtrates, and growth media as controls were used in the experiments. When P. parvum and R. salina cells were mixed, a significant increase in DOC concentration was measured within 30 min. Bacterial biomass increased significantly during the next 6 to 12 h when R. salina was mixed either with the P. parvum culture or the cell-free P. parvum filtrates (allelochemicals only). In contrast, bacterial biomass did not change in the treatments without the allelopathic action (without R. salina cells). Blooms of P. parvum alter the functioning of the planktonic food web by increasing carbon transfer through the microbial loop. In addition, P. parvum may indirectly benefit from the release of DOC as a result of its ability to ingest bacteria, by which it can acquire nutrients during limiting conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Agustí, S, Duarte, CM (2000) Strong seasonality in phytoplankton cell lysis in the NW Mediterranean littoral. Limnol Oceanogr 45(4): 940–947

    Google Scholar 

  2. Anderson, TR, Ducklow, HW (2001) Microbial loop carbon cycling in ocean environments studied using a simple steady-state model. Aquat Microb Ecol 26: 37–49

    Google Scholar 

  3. Arenovski, AL, Lim, EL, Caron, DA (1995) Mixotrophic nanoplankton in oligotrophic surface waters of the Sargasso Sea may employ phagotrophy to obtain major nutrients. J Plankton Res 17(4): 801–820

    Article  Google Scholar 

  4. Azam, F (1998) Microbial control of oceanic carbon flux: the plot thickens. Science 280: 694–696

    Article  CAS  Google Scholar 

  5. Azam, F, Fenchel, T, Field, JG, Gray, JS, Meyer-Reil, LA, Thingstad, F (1983) The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 10: 257–263

    Google Scholar 

  6. Barreiro, A, Guisande, C, Maneiro, I, Lien, TP, Legrand, C, Tamminen, T, Lehtinen, S, Uronen, P, Granéli, E (2005) Relative importance of the different negative effects of the toxic haptophyte Prymnesium parvum on Rhodomonas salina and Brachionus plicatilis. Aquat Microb Ecol 38: 259–267

    Google Scholar 

  7. Bergh, O, Borsheim, KY, Bratbak, G, Heldal, M (1989) High abundance of viruses found in aquatic environments. Nature 340: 467–468

    Article  PubMed  CAS  Google Scholar 

  8. Bjørnsen, PK (1986) Automatic determination of bacterioplankton biomass by image analysis. Appl Environ Microbiol 51: 1199–1204

    PubMed  Google Scholar 

  9. Bratbak, G, Jacobsen, A, Heldal, M (1998) Viral lysis of Phaeocystis pouchetii and bacterial secondary production. Aquat Microb Ecol 16: 11–16

    Google Scholar 

  10. Brussaard, CPD (2004) Viral control of phytoplankton populations—a review. J Eukaryot Microbiol 51(2): 125–138

    Article  PubMed  Google Scholar 

  11. Caron, DA, Sanders, RW, Lim, EL, Marrasé, C, Amaral, LA, Whitney, S, Aoki, RB, Porter, KG (1993) Light-dependent phagotrophy in the freshwater mixotrophic chrysophyte Dinobryon cylindricum. Microb Ecol 25: 93–111

    Article  Google Scholar 

  12. Chen, W, Wangersky, PJ (1996) Rates of microbial degradation of dissolved organic carbon from phytoplankton cultures. J Plankton Res 18(9): 1521–1533

    Article  Google Scholar 

  13. Cole, JJ, Likens, GE, Strayer, DL (1982) Photosynthetically produced dissolved organic carbon: an important carbon source for planktonic bacteria. Limnol Oceanogr 27(6): 1080–1090

    CAS  Google Scholar 

  14. Dafner, EV, Wangersky, PJ (2002) A brief overview of modern directions in marine DOC studies. Part II. Recent progress in marine DOC studies. J Environ Monit 4: 55–69

    Article  CAS  Google Scholar 

  15. Edvardsen, B, Paasche, E (1998) Bloom dynamics and physiology of Prymnesium and Chrysochromulina. In: Anderson, DM, Cembella, AD, Hallegraeff, GM (Eds.) Physiological Ecology of Harmful Algal Blooms NATO ASI Series, Vol G 41, Springer, Berlin Heidelberg New York, pp 193–208

    Google Scholar 

  16. Fistarol, GO, Legrand, C, Granéli, E (2003) Allelopathic effect of Prymnesium parvum on a natural plankton community. Mar Ecol Prog Ser 255: 115–125

    Google Scholar 

  17. Fistarol, GO, Legrand, C, Selander, E, Hummert, C, Stolte, W, Granéli, E (2004) Allelopathy in Alexandrium spp.: effect on a natural plankton community and on algal monocultures. Aquat Microb Ecol 35: 45–56

    Google Scholar 

  18. Fuhrman, JA, Azam, F (1982) Thymidine incorporation as a measure of heterotrophic bacterioplankton production in marine surface waters. Mar Biol 66: 109–120

    Article  Google Scholar 

  19. Furmann, JA (1999) Marine viruses and their biogeochemical and ecological effects. Nature 399: 541–548

    Article  Google Scholar 

  20. González, N, Anadón, R, Viesca, L (2003) Carbon flux through the microbial community in a temperate sea during summer: role of bacterial metabolism. Aquat Microb Ecol 33: 117–126

    Google Scholar 

  21. Granéli, E, Johansson, N (2003) Effects of the toxic haptophyte Prymnesium parvum on the survival and feeding of a ciliate: the influence of different nutrient conditions. Mar Ecol Prog Ser 254: 49–54

    Google Scholar 

  22. Granéli, E, Johansson, N (2003) Increase in the production of allelopathic substances by Prymnesium parvum cells under N- or P-deficient conditions. Harmful Algae News 2: 135–145

    Article  CAS  Google Scholar 

  23. Guillard, RR, Ryther, JH (1962) Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea Cleve. Can J Microbiol 8: 229–239

    PubMed  CAS  Google Scholar 

  24. Hagström, Å, Pinhassi, J, Li Zweifel, U (2001) Marine bacterioplankton show bursts of rapid growth induced by substrate shifts. Aquat Microb Ecol 24: 109–115

    Google Scholar 

  25. Igarashi, T, Satake, M, Yasumoto, T (1996) Prymnesin-2: a potent ichtyotoxic and hemolytic glycoside isolated from the red tide alga Prymnesium parvum. J Am Chem Soc 118: 479–480

    Article  CAS  Google Scholar 

  26. Johansson, N, Granéli, E (1999) Influence of different nutrient conditions on cell density, chemical composition and toxicity of Prymnesium parvum (Haptophyta) in semi-continuous cultures. J Exp Mar Biol Ecol 239(2): 243–258

    Article  CAS  Google Scholar 

  27. Kamiyama, T, Itakura, S, Nagasaki, K (2000) Changes in microbial loop components: effect of a harmful algal bloom formation and its decay. Aquat Microb Ecol 21: 21–30

    Google Scholar 

  28. Karl, DM, Hebel, DV, Bjoerkman, K, Letelier, RM (1998) The role of dissolved organic matter release in the productivity of the oligotrophic North Pacific Ocean. Limnol Oceanogr 43(6): 1270–1286

    CAS  Google Scholar 

  29. Koski, M (1999) Feeding and production of common planktonic copepods: the effect of food and temperature. Volume 16, W. and A. de Nottbeck Foundation Scientific Reports. Ph.D. thesis, University of Helsinki, p 34

  30. Koski, M, Klein Breteler, W, Schogt, N (1998) Effect of food quality on rate of growth and development of the pelagic copepod Pseudocalanus elogatus (Copepoda, Calanoida). Mar Ecol Prog Ser 170: 169–187

    Google Scholar 

  31. Kuuppo, P, Samuelsson, K, Lignell, R, Seppälä, J, Tamminen, T, Andersson, A (2003) Fate of increased production in late-summer plankton communities due to nutrient enrichment of the Baltic Proper. Aquat Microb Ecol 32: 47–60

    Google Scholar 

  32. Legrand, C, Rengefors, K, Fistarol, GO, Granéli, E (2003) Allelopathy in phytoplankton—biochemical, ecological and evolutionary aspects. Phycologia 42(4): 406–419

    Google Scholar 

  33. Legrand, C, Johansson, N, Johnsen, G, Borsheim, KY, Granéli, E (2001) Phagotrophy and toxicity variation in the mixotrophic Prymnesium patelliferum (Haptophyceae). Limnol Oceanogr 46(5): 1208–1214

    Google Scholar 

  34. Li, WKW, Subba Rao, DV, Harrison, WG, Smith, JC, Cullen, JJ, Irwin, B, Platt, T (1983) Autotrophic picoplankton in the tropical Ocean. Science 219: 292–295

    Article  PubMed  CAS  Google Scholar 

  35. Lignell, R (1990) Excretion of organic carbon by phytoplankton: its relation to algal biomass, primary productivity and bacterial secondary productivity in the Baltic Sea. Mar Ecol Prog Ser 68: 85–99

    Google Scholar 

  36. Lignell, R, Kaitala, S, Kuosa, H (1992) Factors controlling phyto- and bacterioplankton in late spring on a salinity gradient in the northern Baltic. Mar Ecol Prog Ser 84: 121–131

    Google Scholar 

  37. Lignell, R, Heiskanen, A-S, Kuosa, H, Gundersen, K, Kuuppo-Leinikki, P, Pajuniemi, R, Uitto, A (1993) Fate of a phytoplankton spring bloom: sedimentation and carbon flow in the planktonic food web in the northern Baltic. Mar Ecol Prog Ser 94: 239–252

    Google Scholar 

  38. Malinsky-Rushansky, NZ, Legrand, C (1996) Excretion of dissolved organic carbon by phytoplankton of different sizes and subsequent bacterial uptake. Mar Ecol Prog Ser 132: 249–255

    CAS  Google Scholar 

  39. Martin-Cereceda, M, Novarino, G, Young, JR (2003) Grazing by Prymnesium parvum on small planktonic diatoms. Aquat Microb Ecol 33: 191–199

    Google Scholar 

  40. Maurin, N, Amblard, C, Bourdier, G (1997) Phytoplanktonic excretion and bacterial reassimilation in an oligomesotrophic lake: molecular weight fractionation. J Plankton Res 19(8): 1045–1068

    Article  CAS  Google Scholar 

  41. Meldahl, A-S, Kvernstuen, J, Grasbakken, GJ, Edvardsen, B, Fonnum, F (1995) Toxic activity of Prymnesium spp and Chrysochromulina spp tested by different test methods. In: Lassus, P, Arzul, G, Erard, E, Gentien, P, Marcaillou, C (Eds.) Harmful Marine Algal Blooms. Technique et Documentation—Lavoisier, Intercept Ltd., pp 315–326

  42. Middelboe, M, Riemann, L, Steward, GF, Hansen, V, Nybroe, O (2003) Virus-induced transfer of organic carbon between marine bacteria in a model community. Aquat Microb Ecol 33: 1–10

    Google Scholar 

  43. Nejstgaard, JC, Solberg, PT (1996) Repression of copepod feeding and fecundity by the toxic haptophyte Prymnesium patelliferum. Sarsia 81: 339–344

    Google Scholar 

  44. Nejstgaard, JC, Båmstedt, U, Bagoien, E, Solberg, PT (1995) Algal constrains on copepod grazing. Growth state, toxicity, cell size, and season as regulating factors. ICES J Mar Sci 52: 347–357

    Article  Google Scholar 

  45. Nielsen, TG, Kiørboe, T, Bjørnsen, PK (1990) Effects of a Chrysocromulina polylepis subsurface bloom on the planktonic community. Mar Ecol Prog Ser 62: 21–35

    Google Scholar 

  46. Nygaard, K, Tobiesen, A (1993) Bacterivory in algae: a survival strategy during nutrient limitation. Limnol Oceanogr 38(2): 273–279

    Google Scholar 

  47. Pomeroy, LR (1974) The ocean’s food web, a changing paradigm. BioScience 24: 499–504

    Article  Google Scholar 

  48. Porter, KG, Feig, YS (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25(5): 943–948

    Article  Google Scholar 

  49. Rengefors, K, Legrand, C (2001) Toxicity in Peridinium aciculiferum—an adaptive strategy to outcompete other winter phytoplankton? Limnol Oceanogr 46(8): 1990–1997

    CAS  Google Scholar 

  50. Riemann, B, Bjørnsen, PK, Newell, S, Fallon, R (1987) Calculation of cell production of coastal marine bacteria based on measured incorporation of (3H)thymidine. Limnol Oceanogr 32: 471–476

    CAS  Google Scholar 

  51. Riemann, L, Middelboe, M (2002) Stability of bacterial and viral community compositions in Danish coastal waters as depicted by DNA fingerprinting techniques. Aquat Microb Ecol 27: 219–232

    Google Scholar 

  52. Shiah, F-K, Chen, T-Y, Gong, G-C, Chen, C-C, Chiang, K-P, Hung, J-J (2001) Differential coupling of bacterial and primary production in mesotrophic and oligitrophic systems of the East China Sea. Aquat Microb Ecol 23: 273–282

    Google Scholar 

  53. Shilo, M, Aschner, M (1953) Factors governing the toxicity of cultures containing the phytoflagellate Prymnesium parvum Carter. J Gen Microbiol 8: 333–343

    PubMed  CAS  Google Scholar 

  54. Shilo, M, Rosenberger, RF (1960) Studies on the toxic principles formed by the chrysomonad Prymnesium parvum Carter. Annals New York Academy of Sciences 90: 866–876

    Article  CAS  Google Scholar 

  55. Skovgaard, A, Hansen, PJ (2003) Food uptake in the harmful alga Prymnesium parvum mediated by excreted toxins. Limnol Oceanogr 48(3): 1161–1166

    Article  CAS  Google Scholar 

  56. Skovgaard, A, Legrand, C, Hansen, PJ, Granéli, E (2003) Effects of nutrient limitation on food uptake in the toxic haptophyte Prymnesium parvum. Aquat Microb Ecol 31: 259–265

    Google Scholar 

  57. Smayda, TJ (1997) Harmful algal blooms: Their ecophysiology and general relevance to phytoplankton blooms in the sea. Limnol Oceanogr 42(5, Part 2): 1137–1153

    Google Scholar 

  58. Smith, DC, Azam, F (1992) A simple, economical method for measuring bacterial protein synthesis in seawater using 3H-leucin. Mar Microb Food Webs 6: 107–114

    Google Scholar 

  59. Sopanen, S, Koski, M, Kuuppo, P, Uronen, P, Legrand, C, Tamminen, T (2006) Toxic haptophyte Prymnesium parvum affects grazing, survival, egestion and egg production of the calanoid copepods Eurytemora affinis and Acartia bifilosa. Mar Ecol Prog Ser 327: 223–232

    CAS  Google Scholar 

  60. Stibor, H, Sommerr, U (2003) Mixotrophy of a photosynthetic flagellate viewed from a optimal foraging theory. Protist 154: 91–98

    Article  PubMed  CAS  Google Scholar 

  61. Stolte, W, Panosso, R, Gisselson, L-Å, Granéli, E (2002) Utilization efficiency of nitrogen associated with riverine dissolved organic carbon (>1 kDa) by two toxin-producing phytoplankton species. Aquat Microb Ecol 29(1): 97–105

    Google Scholar 

  62. Strom, SL, Benner, R, Ziegler, S, Dagg, MJ (1997) Planktonic grazers are a potentially important source of marine dissolved organic carbon. Limnol Oceanogr 42(6): 1364–1374

    CAS  Google Scholar 

  63. Søndergaard, M, Borch, NH (1992) Decomposition of dissolved organic carbon (DOC) in lakes. Arch Hydrobiol Beih Ergebn Limnol 37: 9–20

    Google Scholar 

  64. Søndergaard, M, Borch, NH, Riemann, B (2000) Dynamics of biodegradable DOC produced by freshwater plankton communities. Aquat Microb Ecol 23: 73–83

    Google Scholar 

  65. Terao, K, Ito, E, Igarashi, T, Aritake, S, Seki, T, Satake, M, Yasumoto, T (1996) Effects of prymnesin, maitotoxin and gymnodimine on the structure of gills of small fish akahire, Tanichthys albonubes Lin. In: Yasumoto, T, Oshima, Y, Fukuyo, Y (Eds.) Harmful and Toxic Algal Blooms. Intergovernmental Oceanographic Commission of UNESCO, pp 479–481

  66. Tillmann, U (1998) Phagotrophy by a plasticid haptophyte Prymnesium patelliferum. Aquat Microb Ecol 14: 155–160

    Google Scholar 

  67. Turley, CM (1993) Direct estimates of bacterial numbers in seawater samples without incurring cell loss due to sample storage. In: Kemp, PF, Sherr, BF, Sherr, EB, Cole, JJ (Eds.) Handbook of Methods in Aquatic Microbial Ecology, Lewis Publisher, Boca Raton, USA, pp 143–147

    Google Scholar 

  68. Uronen, P, Lehtinen, S, Legrand, C, Kuuppo, P, Tamminen, T (2005) Haemolytic activity and allelopathy of the haptophyte Prymnesium parvum in nutrient-limited and balanced growth conditions. Mar Ecol Prog Ser 299: 137–148

    Google Scholar 

  69. Utermöhl, H (1958) Vervollkommung der quantitativen phytoplankton-methodik. Mitt Internat Ver Limnol 9: 1–38

    Google Scholar 

  70. van Boekel, WHM, Hansen, FC, Bak, RPM (1992) Lysis-induced decline of a Phaeocystis spring bloom and coupling with the microbial food web. Mar Ecol Prog Ser 81: 269–276

    Google Scholar 

  71. Veloza, AJ, Chu, F-LE, Tang, KW (2006) Trophic modification of essential fatty acids by heterotrophic protists and its effects on the fatty acid composition of the copepod Acartia tonsa. Mar Biol 148: 779–788

    Article  CAS  Google Scholar 

  72. Yariv, J, Hestrin, S (1961) Toxicity of the extracellular phase of Prymnesium parvum cultures. J Gen Microbiol 24: 165–175

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the Tvärminne Zoological Station (University of Helsinki) for providing the laboratory facilities and assistance, and the FATE team for a good spirit during the experiments. Also, we thank Dr. Risto Lignell and Laura Hoikkala for advice in the DOC measurements, and three anonymous reviewers for comments on the manuscript. This work was funded by the European Commission through the FATE project “Transfer and Fate of Harmful Algal Bloom (HAB) Toxins in European Marine Waters” (contract EVK3-CT2001-00055) as part of the EC-EUROHAB cluster. Culturing facilities at Tvärminne Zoological Station were partly funded by the Academy of Finland (grant 50723).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pauliina Uronen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uronen, P., Kuuppo, P., Legrand, C. et al. Allelopathic Effects of Toxic Haptophyte Prymnesium parvum Lead to Release of Dissolved Organic Carbon and Increase in Bacterial Biomass. Microb Ecol 54, 183–193 (2007). https://doi.org/10.1007/s00248-006-9188-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-006-9188-8

Keywords

Navigation