Skip to main content
Log in

Diversity of Phytases in the Rumen

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Examples of a new class of phytase related to protein tyrosine phosphatases (PTP) were recently isolated from several anaerobic bacteria from the rumen of cattle. In this study, the diversity of PTP-like phytase gene sequences in the rumen was surveyed by using the polymerase chain reaction (PCR). Two sets of degenerate primers were used to amplify sequences from rumen fluid total community DNA and genomic DNA from nine bacterial isolates. Four novel PTP-like phytase sequences were retrieved from rumen fluid, whereas all nine of the anaerobic bacterial isolates investigated in this work contained PTP-like phytase sequences. One isolate, Selenomonas lacticifex, contained two distinct PTP-like phytase sequences, suggesting that multiple phytate hydrolyzing enzymes are present in this bacterium. The degenerate primer and PCR conditions described here, as well as novel sequences obtained in this study, will provide a valuable resource for future studies on this new class of phytase. The observed diversity of microbial phytases in the rumen may account for the ability of ruminants to derive a significant proportion of their phosphorus requirements from phytate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Altschul, SF, Gish, W, Miller, W, Myers, EW, Lipman, DJ (1990) Basic local alignment search tool. J Mol Biol 215: 403–410

    Article  PubMed  CAS  Google Scholar 

  2. Barford, D, Flint, AJ, Tonks, NK (1994) Crystal structure of human protein tyrosine phosphatase 1B. Science 263: 1397–1404

    Article  PubMed  CAS  Google Scholar 

  3. Bravo, D, Meschy, F, Bogaert, C, Sauvant, D (2002) Effects of fungal phytase addition, formaldehyde treatment and dietary concentrate content on ruminal phosphorus availability. Anim Feed Sci Technol 99: 73–95

    Article  CAS  Google Scholar 

  4. Bravo, D, Sauvant, D, Bogaert, C, Meschy, F (2003) II. Quantitative aspects of phosphorus absorption in ruminants. Reprod Nutr Dev 43: 271–284

    Article  PubMed  CAS  Google Scholar 

  5. Bryant, MP, Burkey, LA (1953) Cultural methods and some characteristics of some of the numerous groups of bacteria in the bovine rumen. J Dairy Sci 36: 205–217

    Article  Google Scholar 

  6. Chu, H-M, Guo, R-T, Lin, T-W, Chou, C-C, Shr, H-L, Lai, H-L, Tang, T-Y, Cheng, K-J, Selinger, BL, Wang, AHJ (2004) Structures of Selenomonas ruminantium phytase in complex with persulfated phytate: DSP phytase fold and mechanism for sequential substrate hydrolysis. Structure 12: 2015

    Article  PubMed  CAS  Google Scholar 

  7. Cosgrove, DJ (1966) The chemistry and biochemistry of inositol polyphosphates. Rev Pure Appl Chem 16: 209–215

    CAS  Google Scholar 

  8. Graf, E (1986) Chemistry and applications of phytic acid: an overview. In: Graf, E (Ed.) Phytic Acid, Chemistry and Applications. Pilatus Press, Minneapolis, pp 1–22

    Google Scholar 

  9. Heinkoff, S, Heinkoff, JG, Alfrod, WJ, Pitrokovski, S (1995) Automated construction and graphical presentation of protein blocks from unaligned sequences. Gene 163: 12–26

    Google Scholar 

  10. Higgins, D, Thompson, J, Gibson, T, Thompson, JD (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673–4680

    Article  PubMed  Google Scholar 

  11. Hungate, RE (1950) The anaerobic mesophyllic cellulolytic bacteria. Bacteriol Rev 14: 1–49

    PubMed  CAS  Google Scholar 

  12. Konietzny, U, Greiner, R (2002) Molecular and catalytic properties of phytate-degrading enzymes (phytases). Int J Food Sci Technol 37: 791–812

    Article  CAS  Google Scholar 

  13. McAllister, TA, Forster, RJ, Teather, RM, Sharma, R, Attwood, GT, Selinger, LB, Joblin, KN (2005) Manipulation and characterization of the rumen ecosystem through biotechnology. In: Mosenthin, R, Zentek, J, Zebrowska, T (Eds.) Biology of Nutrition in Growing Animals, vol. 4, Elsevier, Amsterdam, pp 559–583

    Google Scholar 

  14. Morse, D, Head, HH, Wilcox, CJ (1992) Disappearance of phosphorus in phytate from concentrates in vitro and from rations fed to lactating dairy cows. J Dairy Sci 75: 1979–1986

    Article  PubMed  CAS  Google Scholar 

  15. Mullaney, EJ, Daly, CB, Ullah, AHJ (2000) Advances in phytase research. Adv Appl Microbiol 47: 157–199

    Article  PubMed  CAS  Google Scholar 

  16. Mullaney, EJ, Ullah, AHJ (2003) The term phytase comprises several different classes of enzymes. Biochem Biophys Res Commun 312: 179–184

    Article  PubMed  CAS  Google Scholar 

  17. Nayini, NR, Markakis, P (1986) Phytases. In: Graf, E (Ed.) Phytic Acid, Chemistry and Applications. Pilatus Press, Minneapolis, pp 101–118

    Google Scholar 

  18. Nelson, TS, Daniels, LB, Hall, JR, Shields, LG (1976) Hydrolysis of natural phytate phosphorus in the digestive tract of calves. J Anim Sci 42: 1509–1512

    CAS  Google Scholar 

  19. Nicholas, KB, Nicholas, HB, Deerfield, DW. GeneDoc: analysis and visualization of genetic variation. Embnet News 4 : 14

  20. Polz, MF, Cavanaugh, CM (1998) Bias in template-to-product ratios in multitemplate PCR. Appl Environ Microbiol 64: 3724–3730

    PubMed  CAS  Google Scholar 

  21. Priefer, U, Simon, R, Puhler, A (1984) Cloning with cosmids. In: Puhler, A, Timmis, KN (Eds.) Advanced Molecular Genetics. Springer-Verlag, New York, pp 190–201

    Google Scholar 

  22. Raun, A, Cheng, E, Burroughs, W (1956) Phytate phosphorus hydrolysis and availability to rumen microorganisms. Agric Food Chem 4: 869–871

    Article  CAS  Google Scholar 

  23. Rose, TM, Schultz, ER, Heinkoff, JG, Pietrokovski, S, McCallum, CM, Heinkoff, S (1998) Consensus-degenerate hybrid oligonucleotide primers for amplification of distantly related sequences. Nucleic Acids Res 26: 1628–1635

    Article  PubMed  CAS  Google Scholar 

  24. Scott, HW, Dehority, BA (1965) Vitamin requirements of several cellulolytic bacteria. J Bacteriol 89: 1169–1175

    PubMed  CAS  Google Scholar 

  25. Selinger, LB, Forsberg, CW, Cheng, KJ (1996) The rumen: a unique source of enzymes for enhancing livestock production. Anaerobe 2: 263–284

    Article  PubMed  CAS  Google Scholar 

  26. Swofford, DL (2003) PAUP* Phylogenetic Analysis Using Parsimony (*and Other Methods) (4.0 ed.). Sinauer Associates, Sunderland, MA

    Google Scholar 

  27. Yanke, LJ, Bae, HD, Selinger, LB, Cheng, K-J (1998) Phytase activity of anaerobic ruminal bacteria. Microbiology 144: 1565–1573

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Jay Yanke, Bob Williams and Bob Forster. An NSERC operating grant to L.B.S. and an NSERC undergraduate student research award to B.A.N. supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Brent Selinger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakashima, B.A., McAllister, T.A., Sharma, R. et al. Diversity of Phytases in the Rumen. Microb Ecol 53, 82–88 (2007). https://doi.org/10.1007/s00248-006-9147-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-006-9147-4

Keywords

Navigation