Skip to main content

Advertisement

Log in

Low Nitrification Rates in Acid Scots Pine Forest Soils Are Due to pH-Related Factors

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

In a previous study, ammonia-oxidizing bacteria (AOB)-like sequences were detected in the fragmentation layer of acid Scots pine (Pinus sylvestris L.) forest soils (pH 2.9–3.4) with high nitrification rates (>11.0 μg g−1 dry soil week−1), but were not detected in soils with low nitrification rates (<0.5 μg g−1 dry soil week−1). In the present study, we investigated whether this low nitrification rate has a biotic cause (complete absence of AOB) or an abiotic cause (unfavorable environmental conditions). Therefore, two soils strongly differing in net nitrification were compared: one soil with a low nitrification rate (location Schoorl) and another soil with a high nitrification rate (location Wekerom) were subjected to liming and/or ammonium amendment treatments. Nitrification was assessed by analysis of dynamics in NH4 +-N and NO3 -N concentrations, whereas the presence and composition of AOB communities were assessed by polymerase chain reaction–denaturing gradient gel electrophoresis and sequencing of the ammonia monooxygenase (amoA) gene. Liming, rather than ammonium amendment, stimulated the growth of AOB and their nitrifying activity in Schoorl soil. The retrieved amoA sequences from limed (without and with N amendment) Schoorl and Wekerom soils exclusively belong to Nitrosospira cluster 2. Our study suggests that low nitrification rates in acidic Scots pine forest soils are due to pH-related factors. Nitrosospira cluster 2 detected in these soils is presumably a urease-positive cluster type of AOB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Aakra, Å, Utåker, JB, Nes, IF (2001) Comparative phylogeny of the ammonia monooxygenase subunit A and 16S rRNA genes of ammonia-oxidizing bacteria. FEMS Microbiol Lett 205: 237–242

    Article  PubMed  CAS  Google Scholar 

  2. Allison, SM, Prosser, JI (1991) Urease activity in neutrophilic autotrophic ammonia-oxidizing bacteria isolated from acid soils. Soil Biol Biochem 23: 45–51

    Article  CAS  Google Scholar 

  3. Avrahami, S, Liesack, W, Conrad, R (2003) Effects of temperature and fertilizer on activity and community structure of soil ammonia oxidizers. Environ Microbiol 5: 691–705

    Article  PubMed  CAS  Google Scholar 

  4. Bäckman, JS, Hermansson, A, Tebbe, CC, Lindgren, PE (2003) Liming induces growth of a diverse flora of ammonia-oxidizing bacteria in acid spruce forest soil as determined by SSCP and DGGE. Soil Biol Biochem 35: 1337–1347

    Article  Google Scholar 

  5. Bäckman, JS, Klemedtsson, ÅK (2003) Increased nitrification in acid coniferous forest soil due to high nitrogen deposition and liming. Scand J For Res 18: 514–524

    Article  Google Scholar 

  6. Bruns, MA, Stephen, JR, Kowalchuk, GA, Prosser, JI, Paul, EA (1999) Comparative diversity of ammonia oxidizer 16S rRNA gene sequences in native, tilled, and successional soils. Appl Environ Microbiol 65: 2994–3000

    PubMed  CAS  Google Scholar 

  7. Burton, SA, Prosser, JI (2001) Autotrophic ammonia oxidation at low pH through urea hydrolysis. Appl Environ Microbiol 67: 2952–2957

    Article  PubMed  CAS  Google Scholar 

  8. Carnol, M, Kowalchuk, GA, de Boer, W (2002) Nitrosomonas europaea-like bacteria detected as the dominant β-subclass Proteobacteria ammonia oxidisers in reference and limed acid forest soils. Soil Biol Biochem 34: 1047–1050

    Article  CAS  Google Scholar 

  9. Ceccherini, MT, Castaldini, M, Piovanelli, C, Hastings, RC, McCarthy, AJ, Bazzicalupo, M, Miclaus, N (1998) Effects of swine manure fertilization on autotrophic ammonia oxidizing bacteria in soil. Appl Environ Microbiol 7: 149–157

    Google Scholar 

  10. Compton, JE, Watrud, LS, Porteous, LA, DeGrood, S (2004) Response of soil microbial biomass and community composition to chronic nitrogen additions at Harvard forest. For Ecol Manag 196: 143–158

    Article  Google Scholar 

  11. de Boer, W, Duyts, H, Laanbroek, HJ (1989) Urea stimulated autotrophic nitrification in suspensions of fertilized, acid heath soil. Soil Biol Biochem 21: 349–354

    Article  Google Scholar 

  12. de Boer, W, Kowalchuk, GA (2001) Nitrification in acid soils: micro-organisms and mechanisms. Soil Biol Biochem 33: 853–866

    Article  Google Scholar 

  13. de Boer, W, Laanbroek, HJ (1989) Ureolytic nitrification at low pH by Nitrosospira spec. Arch Microbiol 152: 178–181

    Article  Google Scholar 

  14. Gray, ND, Hastings, RC, Sheppard, SK, Loughnane, P, Lloyd, D, McCarthy, AJ, Head, IM (2003) Effects of soil improvement treatments on bacterial community structure and soil processes in an upland grassland soil. FEMS Microbiol Ecol 46: 11–22

    Article  CAS  Google Scholar 

  15. Jiang, QQ, Bakken, LR (1999) Comparison of Nitrosospira strains isolated from terrestrial environments. FEMS Microbiol Ecol 30: 171–186

    Article  PubMed  CAS  Google Scholar 

  16. Jordan, FL, Cantera, JJL, Fenn, ME, Stein, LY (2005) Autotrophic ammonia-oxidizing bacteria contribute minimally to nitrification in a nitrogen-impacted forested ecosystem. Appl Environ Microbiol 71: 197–206

    Article  PubMed  CAS  Google Scholar 

  17. Koops, H-P, Böttcher, B, Möller, A, Pommerening-Röser, A, Stehr, G (1991) Classification of eight new species of ammonia-oxidizing bacteria: Nitrosomonas communis sp. nov., Nitrosomonas ureae sp. nov, Nitrosomonas aestuarii sp. nov, Nitrosomonas marina sp. nov, Nitrosomonas nitrosa sp. nov., Nitrosomonas eutropha sp. nov., Nitrosomonas oligotropha sp. nov. and Nitrosomonas halophila sp. nov. J Gen Microbiol 137: 1689–1699

    CAS  Google Scholar 

  18. Koops, H-P, Pommerening-Röser, A (2001) Distribution and ecophysiology of nitrifying bacteria emphasizing cultured species. FEMS Microbiol Ecol 37: 1–9

    Article  CAS  Google Scholar 

  19. Kowalchuk, GA, Stephen, JR (2001) Ammonia-oxidizing bacteria: a model for molecular microbial ecology. Annu Rev Microbiol 55: 485–529

    Article  PubMed  CAS  Google Scholar 

  20. Kowalchuk, GA, Stienstra, AW, Heilig, GHJ, Stephen, J, Woldendrop, JW (2000) Changes in the community structure of ammonia-oxidizing bacteria during secondary succession of calcareous grasslands. Environ Microbiol 2: 99–110

    Article  PubMed  CAS  Google Scholar 

  21. Kowalchuk, GA, Stienstra, AW, Heilig, GHJ, Stephen, JR, Woldendrop, JW (2000) Molecular analysis of ammonia-oxidising bacteria in soil of successional grasslands of the Drentsche A (The Netherlands). FEMS Microbiol Ecol 31: 207–215

    Article  PubMed  CAS  Google Scholar 

  22. Laverman, AM, Speksnijder, AGCL, Braster, M, Kowalchuk, GA, Verhoef, HA, van Verseveld, HW (2001) Spatiotemporal stability on an ammonia-oxidizing community in a nitrogen-saturated forest soil. Microb Ecol 42: 35–45

    PubMed  CAS  Google Scholar 

  23. Mintie, AT, Heichen, RS, Cromack, K, Myrold, DD, Bottomley, PJ (2003) Ammonia-oxidizing bacteria along meadow-to-forest transects in the Oregon Cascade Mountains. Appl Environ Microbiol 69: 3129–3136

    Article  PubMed  CAS  Google Scholar 

  24. Nicolaisen, MH, Ramsing, NB (2002) Denaturing gradient gel electrophoresis (DGGE) approaches to study the diversity of ammonia-oxidizing bacteria. J Microbiol Methods 50: 189–203

    Article  PubMed  CAS  Google Scholar 

  25. Nugroho, RA, Röling, WFM, Laverman, AM, Zoomer, HR, Verhoef, HA (2005) Presence of Nitrosospira cluster 2 bacteria corresponds to N transformation rates in nine acid Scots pine forest soils. FEMS Microbiol Ecol 53: 473–481

    Article  PubMed  CAS  Google Scholar 

  26. Nugroho, RA, Röling, WFM, Laverman, AM, Verhoef, HA (2006) Net nitrification rate and presence of Nitrosospira cluster 2 in acid coniferous forest soils appear to be tree species specific. Soil Biol Biochem 38: 1166–1171

    Article  CAS  Google Scholar 

  27. Papen, H, Geßler, A, Zumbusch, E, Rennenberg, H (2002) Chemolithoautotrophic nitrifiers in the phyllosphere of a spruce ecosystem receiving high atmospheric nitrogen input. Curr Microbiol 44: 56–60

    Article  PubMed  CAS  Google Scholar 

  28. Purkhold, U, Wagner, M, Timmermann, G, Pommerening-Röser, A, Koops, H-P (2003) 16S rRNA and amoA-based phylogeny of 12 novel beta-proteobacterial ammonia-oxidizing isolates: extension of the dataset and proposal of a new lineage within the nitrosomonads. Int J Syst Evol Microbiol 53: 1485–1494

    Article  PubMed  CAS  Google Scholar 

  29. Stark, JM, Firestone, MK (1996) Kinetic characteristics of ammonium-oxidizer communities in a California oak woodland–annual grassland. Soil Biol Biochem 28: 1307–1317

    Article  CAS  Google Scholar 

  30. Stephen, JR, Kowalchuk, GA, Bruns, M-AV, McCaig, AE, Phillips, CJ, Embley, TM, Prosser, JI (1998) Analysis of β-subgroup proteobacterial ammonia oxidizer populations in soil by denaturing gradient gel electrophoresis analysis and hierarchical phylogenetic probing. Appl Environ Microbiol 64: 4147–4154

    Google Scholar 

  31. Stephen, JR, McCaig, AE, Smith, Z, Prosser, JI, Embley, TM (1996) Molecular diversity of soil and marine 16S rRNA gene sequences related to beta-subgroup ammonia-oxidizing bacteria. Appl Environ Microbiol 62: 4147–4154

    PubMed  CAS  Google Scholar 

  32. Ste-Marie, C, Paré, D (1999) Soil, pH and N availability effects on net nitrification in the forest floors of a range of boreal forest stands. Soil Biol Biochem 31: 1579–1589

    Article  CAS  Google Scholar 

  33. Suwa, Y, Imamura, Y, Suzuki, T, Tashido, T, Urushigawa, Y (1994) Ammonia-oxidizing bacteria with different sensitivities to (NH4)2SO4 in activated sludges. Wat Res 28: 1523–1532

    Article  CAS  Google Scholar 

  34. von Wintzingerode, F, Göbel, UB, Stackebrandt, E (1997) Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev 21: 213–229

    Article  Google Scholar 

  35. Webster, G, Embley, TM, Prosser, JI (2002) Grassland management regimens reduce small-scale heterogeneity and species diversity of β-proteobacterial ammonia oxidizer populations. Appl Environ Microbiol 68: 20–30

    Article  PubMed  CAS  Google Scholar 

  36. Yeager, CM, Northup, DE, Grow, CC, Barns, SM, Kuske, CR (2005) Changes in nitrogen-fixing and ammonia-oxidizing bacterial communities in soil of a mixed conifer forest after wildfire. Appl Environ Microbiol 71: 2713–2722

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank Dr. Paul L.E. Bodelier for providing cultures of Nitrosomonas europaea and Nitrosospira sp. AHB1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Nugroho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nugroho, R.A., Röling, W.F.M., Laverman, A.M. et al. Low Nitrification Rates in Acid Scots Pine Forest Soils Are Due to pH-Related Factors. Microb Ecol 53, 89–97 (2007). https://doi.org/10.1007/s00248-006-9142-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-006-9142-9

Keywords

Navigation