Skip to main content
Log in

Metabolic Activity and Phylogenetic Diversity of Reed (Phragmites australis) Periphyton Bacterial Communities in a Hungarian Shallow Soda Lake

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

In the present study, the species composition and potential metabolic activities of bacterial communities of reed Phragmites australis (Cav.) (Trin. ex Steudel) periphyton from Lake Velencei were studied by cultivation-based and metabolic fingerprinting methods. Serially diluted spring biofilm samples were used to test the community-level physiological profiling (CLPP) using BIOLOG microplates, and for plating onto different media. On the basis of their morphological, biochemical, and physiological test results, 173 strains were clustered by numerical analysis. Representatives of amplified ribosomal DNA restriction analysis (ARDRA) groups were identified by their 16S rDNA sequence comparison. Based on the results of the CLPP investigations, regional differences were detected among the utilized substrate numbers and types, parallel with the increase in incubation time. The phenotypic test results of the strains showed considerable variability with respect to the sampling sites and the media used for cultivation. The most frequently isolated strains were identified as members of genera Agrobacterium, Pseudomonas (P. anguilliseptica, P. marginalis, P. alcaligenes, P. fragi) with aerobic or facultative anaerobic respiratory metabolism, and the species Aeromonas sobria and A. veronii with strong facultative fermentative metabolism. Other strains were identified as Gram-positive Arthrobacter, Bacillus, and Kocuria species. The rarely isolated strains were members of β-Proteobacteria (Acidovorax, Delftia, Hydrogenophaga, and Rhodoferax), γ-Proteobacteria (Psychrobacter and Shewanella), low G + C Gram-positives (Brevibacillus, Paenibacillus, and Exiguobacterium) and high G + C Gram-positives (Aureobacterium and Microbacterium).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Amann, R, Lemmer, H, Wagner, M (1998) Monitoring the community structure of wastewater treatment plants: a comparison of old and new techniques. FEMS Microb Ecol 25: 205–215

    Article  CAS  Google Scholar 

  2. Böckelmann, U, Manz, W, Neu, TR, Szewzyk, U (2000) Characterization of the microbial community of lotic organic aggregates (‘river snow’) in the Elbe River of Germany by cultivation and molecular methods. FEMS Microbiol Ecol 33: 157–170

    Google Scholar 

  3. Borsodi, AK, Farkas, I, Kurdi, P (1998) Numerical analysis of planktonic and reed biofilm bacterial communities of Lake Fertő (Neusiedlersee, Hungary/Austria). Water Res 32: 1831–1840

    Article  CAS  Google Scholar 

  4. Borsodi, AK, Vladár P, Cech G, Gedeon, G, Beszteri B, Micsinai A, Reskóné, MN, Márialigeti, K (2003) Bacterial activities in the sediment of Lake Velencei, Hungary. Hydrobiologia 506–509: 721–728

    Article  Google Scholar 

  5. Brümmer, IHM, Felske, A, Wagner-Döbler, I (2003) Diversity and seasonal variability of β-proteobacteria in biofilms of polluted rivers: analysis by temperature gradient gel electrophoresis and cloning. Appl Environ Microbiol 69: 4463–4473

    Article  PubMed  CAS  Google Scholar 

  6. Cowan, ST, Steel, KJ (1974) Manual for the Identification of Medical Bacteria. University Press, Cambridge

    Google Scholar 

  7. Garland, JL (1997) Analysis and interpretation of community-level physiological profiles in microbial ecology. FEMS Microb Ecol 24: 289–300

    Article  CAS  Google Scholar 

  8. Ibekwe, AM, Grieve, CM, Lyon, SR (2003) Characterization of microbial communities and composition in constructed dairy wetland wastewater effluent. Appl Environ Microbiol 69: 5060–5069

    Article  PubMed  CAS  Google Scholar 

  9. Konopka, A, Oliver, L, Turco, RF Jr (1998) The use of carbon substrate utilization patterns in environmental and ecological microbiology. Microb Ecol 35: 103–115

    Article  PubMed  CAS  Google Scholar 

  10. Kovács, G, Burghardt, J, Pradella S, Schumann, P, Stackebrandt, E, Márialigeti, K (1999) Kocuria palustris sp. nov. and Kocuria rhizophila sp. nov., isolated from the rhizoplane of the narrow-leaved cattail (Typha angustifolia). Int J Syst Bacteriol 49: 167–173

    PubMed  Google Scholar 

  11. Langó, Zs, Borsodi, AK, Micsinai, A (2002) Comparative studies on Aeromonas strains isolated from lakes Balaton (Hungary) and Fertő/Neusiedlersee (Hungary). Acta Microbiol Immun Hung 49: 37–45

    Article  Google Scholar 

  12. Makk, J, Ács, É, Márialigeti, K, Kovács, G (2003) Investigations on the Danube gravel-biofilm diatom-associated bacterial communities. Biologia 58: 729–742

    Google Scholar 

  13. Massol-Deya, AA, Odelson, DA, Hickey, RF, Tiedje, JM (1995) Bacterial community fingerprinting of amplified 16S and 16–23S ribosomal DNA sequences and restriction endonuclease analysis (ARDRA). In: Akkermans, ADL, van Elsas, JD, deBruijn, FJ (Eds.) Molecular Microbial Ecology Manual. Kluwer Academic Publishers, Dordrecht, pp 3.3.2:1–8

  14. Meyer, AF, Lipson, DA, Martin, AP, Schadt, CW, Schmidt, SK (2004) Molecular and metabolic characterization of cold-tolerant alpine soil Pseudomonas sensu stricto. Appl Environ Microbiol 70: 483–489

    Article  PubMed  CAS  Google Scholar 

  15. Meyer, JM, Stintzi, A, Coulanges, V, Shivaji, S, Voss, JA, Taraz, K, Budzikiewicz, H (1998) Siderotyping of fluorescent pseudomonads: characterization of pyoverdines of Pseudomonas fluorescens and Pseudomonas putida strains from Antarctica. Microbiology 144: 3119–3126

    Article  PubMed  CAS  Google Scholar 

  16. Micsinai, A, Borsodi, AK, Csengeri, V, Horváth, A, Oravecz, O, Nikolausz, M, Reskóné, MN, Márialigeti, K (2003) Rhizome-associated bacterial communities of healthy and declining reed stands in Lake Velencei, Hungary. Hydrobiologia 506–509: 707–713

    Article  Google Scholar 

  17. Monfort, P, Baleux, B (1990) Dynamics of Aeromonas hydrophila, Aeromonas sobria and Aeromonas caviae in a sewage treatment pond. Appl Environ Microbiol 56: 2007–2011

    Google Scholar 

  18. Parret, AHA, Schoofs, G, Proost, P, De Mot, R (2003) Plant lectin-like bacteriocin from a rhizosphere-colonizing Pseudomonas isolate. J Bacteriol 185: 897–908

    Article  PubMed  CAS  Google Scholar 

  19. Pinney, ML, Westerhoff, PK, Baker, L (2000) Transformations in dissolved organic carbon through constructed wetlands. Water Res 34: 1897–1911

    Article  CAS  Google Scholar 

  20. Podani, J (2001) SYN-TAX 2000 Computer Programs for Data Analysis in Ecology and Systematics (Users’ Manual)

  21. Poindexter, JS (1991) Dimorphic prosthecate bacteria: the genera Caulobacter, Asticcacaulis, Hyphomicrobium, Hyphomonas and Thiodendron. In: Balows, A, Trüper, HG, Dworkin, M, Harder, W, Schleifer, K (Eds.) The Prokaryotes. Springer-Verlag, New York, pp 2176–2196

    Google Scholar 

  22. Rainey, FA, Rainey, WN, Kroppenstedt, RM, Stackebrandt, E (1996) The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol 46: 1088–1092

    Article  PubMed  CAS  Google Scholar 

  23. Reskóné, MN, Borsodi, AK (2003) Long-term investigations on the changes of the MPN values of bacterial communities participating in the sulphur cycle in Lake Velencei, Hungary. Hydrobiologia 506–509: 715–720

    Article  Google Scholar 

  24. Schulze, R, Spring, S, Amann, R, Huber, I, Ludwig, W, Schleifer, KH, Kämpfer, P (1999) Genotypic diversity of Acidovorax strains isolated from activated sludge and description of Acidovorax defluvii sp. nov. Syst Appl Microbiol 22: 205–214

    PubMed  CAS  Google Scholar 

  25. Smalla, K, Wachtendorf, U, Heuer, H, Liu, WT, Forney, L (1998) Analysis of BIOLOG GN substrate utilization patterns by microbial communities. Appl Environ Microbiol 64: 1220–1225

    PubMed  CAS  Google Scholar 

  26. Smibert, RM, Krieg, NR (1994) Phenotypic characterization. In: Gerhardt, P, Murray, RGE, Wood, WA, Krieg, NR (Eds.) Methods for General and Molecular Bacteriology. American Society for Microbiology, Washington, DC, pp 603–711

    Google Scholar 

  27. Strunk, O, Ludwig, W (1995) ARB—a software for environmental sequence data. Department of Microbiology. Technical University of Munich, Germany

    Google Scholar 

  28. Vacca, G, Wand, H, Nikolausz, M, Kuschk, P, Kästner, M (2005) Effect of plants and filter materials on bacterial removal in pilot-scale constructed wetlands. Water Res 39: 1361–1373

    Article  PubMed  CAS  Google Scholar 

  29. Vargha, M, Takáts, Z, Márialigeti, K (2005) Degradation of atrazine in a laboratory scale model system with Danube river sediment. Water Res 39: 1560–1568

    Google Scholar 

  30. Wagner, M, Loy, A, Nogueira, R, Purkhold, U, Lee, N, Daims, H (2002) Microbial community composition and function in wastewater treatment plants. Antonie van Leeuwenhoek 81: 665–680

    Article  PubMed  CAS  Google Scholar 

  31. Wand, H, Laht, T, Peters, M, Becker, PM, Stottmeister, U, Heinaru, A (1997) Monitoring of biodegradative Pseudomonas putida strains in aquatic environments using molecular techniques. Microb Ecol 33: 124–133

    Article  PubMed  Google Scholar 

  32. Worm, J, Nybroe, O (2001) Input of protein to lake water microcosms affects expression of proteolytic enzymes and the dynamics of Pseudomonas spp. Appl Environ Microbiol 67: 4955–4962

    Article  PubMed  CAS  Google Scholar 

  33. Young, JM, Kuykendall, LD, Martínez-Romero, E, Kerr, A, Sawada, H (2001) A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Cohn 1942 and Allorhizobium undicola de Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola and R. vitis. Int J Syst Evol Microbiol 51: 89–103

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This research was supported by the Hungarian National Science Foundation (OTKA) Grants T032444 and T038021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea K. Borsodi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borsodi, A.K., Rusznyák, A., Molnár, P. et al. Metabolic Activity and Phylogenetic Diversity of Reed (Phragmites australis) Periphyton Bacterial Communities in a Hungarian Shallow Soda Lake. Microb Ecol 53, 612–620 (2007). https://doi.org/10.1007/s00248-006-9133-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-006-9133-x

Keywords

Navigation