Skip to main content
Log in

Bacterial Endosymbionts of Pyrodinium bahamense var. compressum

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The study presents evidence in support of the bacterial theory associated with the toxicity of Pyrodinium bahamense var. compressum. Bacterial endosymbionts from Philippine P. bahamense var. compressum strain Pbc MZRVA 042595 were isolated and identified via 16S rDNA sequence analysis. Taxonomic diversity of the identified culturable intracellular microbiota associated with Philippine P. bahamense var. compressum was established to be limited to the Phyla Proteobacteria, Actinobacteria, and Firmicutes. Major endosymbionts identified included Moraxella spp., Erythrobacter spp., and Bacillus spp., whereas Pseudomonas putida, Micrococcus spp., and Dietzia maris were identified as minor isolates. All identified strains except D. maris, P. putida, and Micrococcus spp. were shown to contain either saxitoxin or neo saxitoxin or both at levels ≤73 ng/107 bacterial cells based on high-performance liquid chromatography analysis. Paralytic shellfish poisoning-like physiologic reactions in test animals used in the mouse assay were recorded for the endosymbionts except for P. putida. The study is the first to elucidate the possible contribution of bacterial endosymbionts in the toxicity of P. bahamense var. compressum isolated in the Philippines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altschul, SF, Gish, W, Miller, W, Myers, EW, Lipman, DJ (1990) Basic local alignment search tool. J Mol Biol 215: 403–410

    Article  CAS  PubMed  Google Scholar 

  2. Anderson, DM (1989) Cysts as factors in Pyrodinium ecology. In: Hallegraeft, GM, MacLean, JL (Eds.) Biology, Epidemiology and Management of Pyrodinium Red Tides, ICLARM Conference Proceedings, pp 81–88

  3. AOAC (1990) Official Methods of Analysis 15th ed. Association of Official Analytical Chemists, Washington, DC

    Google Scholar 

  4. Azanza-Corrales, R, Hall, S (1993) Isolation and culture of Pyrodinium bahamense var. compressum from the Philippines. In: Smayda, YJ, Shimizu, Y (Eds.) Toxic Marine Phytoplankton Blooms in the Sea. Elsevier Science Publishers, Amsterdam, pp 725–730

    Google Scholar 

  5. Azanza, MPV, Azanza, RV, Gedarria, AL (1999) Red Tide Initiative: Detoxification of Mussels. Terminal Report, Department of Science and Technology, Philippines

  6. Claus, D, Berkeley, RCW (1986) Genus Bacillus, Cohn 1872. In: Sneath, PHA, Mair, NS, Sharpe, ME, Holt, JG (Eds.) Bergey's Manual of Systematic Bacteriology, Vol. 2. The Williams and Wilkins Co, Baltimore, pp 1105–1139

    Google Scholar 

  7. Colquhoun, J, Heald, S, Li, L, Tamaoka, J, Kato, C, Horikoshi, K, Bull, A (1998) Taxonomy and Biotransformation activities of some deep-sea actinomycetes. Extremophiles 2: 269–277

    Article  CAS  PubMed  Google Scholar 

  8. Cordova, JL, Cardenas, L, Cardenas, L, Yudelevich, A (2002) Multiple bacterial infection of Alexandrium catenella (Dinophyceae). J Plankton Res 24: 1–8

    Article  Google Scholar 

  9. Córdova, JL, Escudero, C, Bustamante, J (2003) Bloom inside the bloom: intracellular bacteria multiplication within toxic dinoflagellates. Rev Biol Mar Oceanogr 38(2): 57–67

    Article  Google Scholar 

  10. Denner, EBM, Vybiral, D, Koblizek, M, Kampfer, P, Busse, HJ, Velimirov, B (2002) Erythrobacter citreus sp. nov., a yellow-pigmented bacterium that lacks bacteriochlorophyll a, isolated from the western Mediterranean Sea. Int J Syst Evol Microbiol 52: 1655–1661

    Article  CAS  PubMed  Google Scholar 

  11. Doucette, GJ, Trick, CG (1995) Characterization of bacteria associated with different isolates of Alexandrium tamarense. In: Lassus, P, Arzuk, G, Erard, E, Gentein, P, Marcaillou-LeBaut, E (Eds.) Harmful Marine Algal Blooms, Technique et Documentation. Intercept, Ltd., Lavoisier, pp 33–38

    Google Scholar 

  12. Franca, S, Viegas, S, Mascaranhas, V, Pinto, L, Doucette, GJ (1995) Prokaryotes in association with a toxic Alexandrium lusitanicum in culture. In: Lassus, P, Arzuk, G, Erard, E, Gentein, P, Marcaillou-LeBaut, E (Eds.) Harmful Marine Algal Blooms, Technique et Documentation. Intercept Ltd., Lavoisier, pp 45–51

    Google Scholar 

  13. Franca, S, Pinto, L, Alvito, P, Sousa, I, Vasconcelos, V, Doucette, GJ (1996) Studies on prokaryotes associated with PSP producing dinoflagellate. In: Yasumoto, T, Oshima, Y, Fukuyo, Y (Eds.) Harmful and Toxic Algal Blooms. Intergovernmental Oceanographic Commission of UNESCO, pp 347–350

  14. Gallacher, S, Flynn, KJ, Franco, JM, Brueggemann, EE, Hines, HB (1997) Evidence for production of paralytic shellfish toxins by bacteria associated with Alexandrium spp. (Dinophyta) in culture. Appl Environ Microbiol 63: 239–245

    CAS  PubMed  Google Scholar 

  15. Gallacher, S, Smith, E (1999) Bacteria and paralytic shellfish toxins. Protist 150: 245–255

    Article  CAS  PubMed  Google Scholar 

  16. Giovannoni, S, Rappe, M (2000) Evolution, Diversity and Molecular Ecology of Marine Prokaryotes. In: Kirchmann, DL (Eds.) Microbial Ecology of the Oceans, Wiley-Liss Inc. © 2000

  17. Gonzales, I, Tosteson, CG, Hansley, V, Tosteson, TR (1995) Associated bacteria and toxicity development in cultured Ostreopsis lenticularis. In: Lassus, P, Arzuk, G, Erard, E, Gentein, P, Marcaillou-LeBaut, E (Eds.) Harmful Marine Algal Blooms, Technique et documentation, Lavoisier, Intercept Ltd.: 451–456

  18. Groben, R, Doucette, GJ, Kopp, M, Kodama, M, Amann, R, Medlin, LK (2000) 16S rRNA Targeted Probes for the Identification of Bacterial Strains Isolated from Cultures of the Toxic Dinoflagellate Alexandrium tamarense. Microb Ecol 39(3): 186–196, Apr

    CAS  PubMed  Google Scholar 

  19. Hold, GL, Smith, EA, Rappe, MS and 7 other authors (2001) Characterisation of bacterial communities associated with toxic and non-toxic dinoflagellates: Alexandrium spp. and Scrippsiella trochoidea. FEMS Microbiol Ecol 37: 161–173

    Article  CAS  Google Scholar 

  20. Ivanova, E et al. (1999) Characterization of Bacillus strains of marine origin. Int Microbiol 2: 267–271

    CAS  PubMed  Google Scholar 

  21. Ivanova, EP, Bowman, JP, Lysenko, AM, Zhukova, NV, Gorshkova, NM, Kuznetsova, TA, Kalinovskaya, NI, Shevchenko, LS, Mikhailov, VV (2005) Erythrobacter vulgaris sp. nov., a novel organism isolated from the marine invertebrates. Syst Appl Microbiol 28(2): 123–130, Mar

    Article  CAS  PubMed  Google Scholar 

  22. Jasti, S, Sieracki, E, Poulton, N, Giewat, M, Rooney-Varga, J (2005) Phylogenetic diversity and specificity of bacteria closely associated with Alexandrium spp., and other phytoplankton. Appl Environ Microbiol 71: 3843–3494

    Article  CAS  Google Scholar 

  23. Kodama, M, Ogata, T, Sato, S (1988) Bacterial production of saxitoxin. Agric Biol Chem 52: 1075–1077

    CAS  Google Scholar 

  24. Kodama, M, Ogata, T, Sato, S (1989) Saxitoxin-producing bacterium isolated from Protogonyaulax tamarensis. In: Okaichi, T, Anderson, DM, Nemoto, T (Eds.) Red Tides: Biology, Environmental Science, and Toxicology. Elsevier Science Publishing Co., Inc. New York, pp 363–366

    Google Scholar 

  25. Kodama, M (1990) Possible links between bacteria and toxin production in algal blooms. In: Granéli, E, Sondström, B, Edler, L, Anderson, DM (Eds.) Toxic Marine Phytoplankton. Elsevier Science Publishing Co., Inc. Amsterdam, pp 52–61

    Google Scholar 

  26. Levasseur, M, Monfort, P, Doucette, GJ, Michaud, S (1996) Preliminary study of the impact of bacteria as PSP producers in the gulf of St. Lawrence, Canada. In: Yasumoto, T, Oshima, Y, Fukuyo, Y (Eds.) Harmful and Toxic Algal Blooms. Intergovernmental Oceanographic Commission of UNESCO, pp 363–366

  27. Liang, P, Pardee, AB (1992) Differential display of eukaryotic messenger RNA bymeans of the polymerase chain reaction. Science 257: 967–971

    Article  CAS  PubMed  Google Scholar 

  28. Maclean, JL (1973) Red tides and paralytic shellfish poisoning in Papua New Guinea. Limnol Oceanogr 22(2): 234–254

    Article  Google Scholar 

  29. Martins, C, Alvito, P, Tavares, MJ, Pereira, P, Doucette, G, France, S (2003) Reevaluation of production of paralytic shellfish toxin by bacteria associated with dinoflagellates of the Portuguese Coast. Appl Environ Microbiol 69(9): 5693–5698, September

    Article  CAS  PubMed  Google Scholar 

  30. Monodane, T, Kawabata, Y, Takada, H (1997) Micrococcus luteus cells and cell walls induce anaphylactoid reactions accompanied by early death and serum cytokines in mice primed with muramyl dipeptide. FEMS Immunol Med Microbiol 17(1): 49–55, Jan

    Article  CAS  PubMed  Google Scholar 

  31. Munn, CB (2004) Marine Microbiology: Ecology and Application. Garland Science/BIOS Scientific Publishers

  32. Naharashi, T (1988) Mechanism of tetrotodoxin and saxitoxin action. In: Tiv, AT (Eds.) Handbook of Natural Toxins, Marine Tetrodotoxins and Venoms, Vol. 3. Marcel Dekker, Inc. New York

    Google Scholar 

  33. Ogata, T, Kodama, M, Komaru, K, Sakamoto, S, Sato, S, Simidu, U (1990) Production of paralytic shelfish toxins by bacteria isolated from toxic dinoflagellates. In: Granéli, E, Sondström, B, Edler, L, Anderson, DM (Eds.) Toxic Marine Phytoplankton. Elsevier, Amsterdam, pp 311–315

    Google Scholar 

  34. Oshima, Y (1989) Analysis of Pyrodinium bahamense PSP toxins by high-performance liquid chromatography. In: Hallegraeft, GM, MacLean, JL (Eds.) Biology, Epidemiology and Management of Pyrodinium Red Tides, ICLARM Conference Proceedings, pp 273–278

  35. Oshima, Y (1995) Post-column derivatization HPLC methods for paralytic shellfish poisons. In: Hallegraeft, GM, Anderson, DM, Cembella, AD (Eds.) Manual on Harmful Marine Microalgae. IOC Manuals and Guides no. 33 (UNESCO), pp 81–94

  36. Paustian Timothy. Microbiology and Bacteriology: The world of microbes. Online Textbook. http://www.bact.wisc.edu/Microtextbook/index.php. © 1999–2004. Last access: January 19, 2005

  37. Plumley, FG, Wei, ZY, Toivanen, TB, Doucette, GJ, Franca, S (1999) Tn5 mutagenesis of Pseudomonas stutzeri SF/PS, a bacterium associated with Alexandrium lusitanicum (Dinophyceae) and Paralytic Shellfish Poisoning. J Phycol 35: 1390–1396

    Article  CAS  Google Scholar 

  38. Rainey, FA, Klatte, S, Kroppenstedt, RM, Stackebrandt, E (1995) Dietzia, a new genus including Dietzia maris comb. nov., formerly Rhodococcus maris. Int J Syst Bacteriol 45: 32–36

    CAS  PubMed  Google Scholar 

  39. Rausch de Traubenberg, C, Geraud, ML, Soyer-Gobillard, MO, Emdadi, D (1995) The toxic dinoflagellate Prorocentrum lima and its associated bacteria. I. An ultrastructural study. Eur J Protistol 31: 318–326

    Google Scholar 

  40. Sidharta, BR (1999) Studies on associated bacteria from Pyrodinium bahamense var. compressum culture. MS thesis, University of the Philippines, Philippines

  41. Silva, ES (1962) Some observations on marine dinoflagellate cultures. I. Prorocentrum micans Ehr. and Gymnodinium spinifera (Clap. and Lach.) dies., Gonyaulax tamarensis Leb., and Peridinium trochoideum (Stein) Lemm. Notas Stud Inst Biol Mar 26: 1–21

    Google Scholar 

  42. Silva, ES (1982) Relationship between dinoflagellates and intracellular bacteria. In: Hoppe, HA, Levring, T (Eds.) Marine Algae in Pharmaceutical Science, Vol. 2. Walter de Gruyter, Berlin, pp 269–288

    Google Scholar 

  43. Silva, ES (1990) Intracellular bacteria: The origin of dinoflagellate toxicity. J Pathol Toxicol Onol 19: 124–128

    Google Scholar 

  44. Usup, G, Azanza, RV (1998) Physiology and bloom dynamics of the tropical dinoflagellate Pyrodinium bahamense. In: Anderson, DM, Cembella, AD, Hallergraeff, GM (Eds.) Physiology and Ecology of Harmful Algal Blooms. Springer-Verlag, Berlin Heidelberg, pp 81–94

    Google Scholar 

  45. Usup, G, Ahmad, A, Ismail, N (1989) Pyrodinium bahamense var. compressum red tide studies in Sabah, Malaysia. In: Hallegraeft, GM, MacLean, JL (Eds.) Biology, Epidemiology and Management of Pyrodinium Red Tides, ICLARM Conference Proceedings, pp 97–110

  46. Vasquez, M, Gruttner, C, Gallacher, S, Moore, ERB (2001) Detection and characterization of toxigenic bacteria associated with Aulacomya ater and Alexandrium catenella contaminated with PSP. J Shellfish Res 20: 1245–1249

    Google Scholar 

  47. Weisberg, WG, Barns, SM, Pelletier, DA, Lane, DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173: 697–703

    Google Scholar 

  48. Wilson, KE, Blitchington, RB, Greene, RC (1990) Amplification of bacterial 16S ribosomal DNA with polymerase chain reaction. J Clin Microbiol 28: 1942–1946

    CAS  PubMed  Google Scholar 

  49. Yang, S, Sugawara, S, Monodane, T, Nishijima, M, Adachi, Y, Akashi, S, Miyake, K, Hase, S, Takada, H (2001) Micrococcus luteus teichuronic acids activate human and murine monocytic cells in a CD14- and toll-like receptor 4-dependent manner. Infect Immun 69(4): 2025–2030, Apr

    Article  CAS  PubMed  Google Scholar 

  50. Yoon, JH, Kim, H, Kim, IG, Kang, KH, Park, YH (2003) Erythrobacter flavus sp. nov., a slight halophile from the East Sea in Korea. Int J Syst Evol Microbiol 53: 1169–1174

    Article  CAS  PubMed  Google Scholar 

  51. Yoon, JH, Kang, K, Oh, TK, Park, YH (2004) Erythrobacter aquimaris sp. nov., isolated from sea water of a tidal flat of the Yellow Sea in Korea. Int J Syst Evol Microbiol 54: 1981–1985

    Article  CAS  PubMed  Google Scholar 

  52. Yoon, JH, Oh, TK, Park, YH (2005) Erythrobacter seohaensis sp. nov. and Erythrobacter gaetbuli sp. nov., isolated from a tidal flat of the Yellow Sea in Korea. Int J Syst Evol Microbiol 55: 71–75

    Article  CAS  PubMed  Google Scholar 

  53. Yurkov, Vladimir, Thomas Beatty, J (1998) Aerobic anoxygenic phototrophic bacteria. Microbiol Mol Biol Rev 62(3): 695–724, September

    CAS  PubMed  Google Scholar 

  54. Zheng, TL, Su, JQ, Maskaoui, K, Yu, ZM, Hu, Z, Xu, JS, Hong, HS (2005) Microbial modulation in the biomass and toxin production of a red-tide causing alga. Mar Pollut Bull 51(8–12): 1018–1025

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the University of the Philippines Office of the Vice Chancellor for Research and Development (OVCRD) for funding the study, as well as the Department of Food Science and Nutrition, College of Home Economics, The Marine Science Institute, College of Science, and the National Institute of Molecular Biology and Biotechnology, College of Science of the University of the Philippines, Diliman, for the use of equipment and resources. The authors would also like to thank Dr. Lourdes J. Cruz and the Marine Biochemistry and Toxinology Laboratory, MSI, UP Diliman, for the use of the HPLC set-up.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ma. Patricia V. Azanza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azanza, M.P.V., Azanza, R.V., Vargas, V.M.D. et al. Bacterial Endosymbionts of Pyrodinium bahamense var. compressum . Microb Ecol 52, 756–764 (2006). https://doi.org/10.1007/s00248-006-9128-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-006-9128-7

Keywords

Navigation