Skip to main content

Eisenia fetida (Oligochaeta, Lumbricidae) Activates Fungal Growth, Triggering Cellulose Decomposition During Vermicomposting

Abstract

Cellulose is the most abundant polymer in nature and constitutes a large pool of carbon for microorganisms, the main agents responsible for soil organic matter decomposition. Cellulolysis occurs as the result of the combined action of fungi and bacteria with different requirements. Earthworms influence decomposition indirectly by affecting microbial population structure and dynamics and also directly because the guts of some species possess cellulolytic activity. Here we assess whether the earthworm Eisenia fetida (Savigny 1826) digests cellulose directly (i.e., with its associated gut microbiota) and also whether the effects of E. fetida on microbial biomass and activity lead to a change in the equilibrium between fungi and bacteria. By enhancing fungal communities, E. fetida would presumably trigger more efficient cellulose decomposition. To evaluate the role of E. fetida in cellulose decomposition, we carried out an experiment in which pig slurry, a microbial-rich substrate, was treated in small-scale vermireactors with and without earthworms. The presence of earthworms in vermireactors significantly increased the rate of cellulose decomposition (0.43 and 0.26% cellulose loss day−1, with and without earthworms, respectively). However, the direct contribution of E. fetida to degradation of cellulose was not significant, although its presence increased microbial biomass (Cmic) and enzyme activity (cellulase and β-glucosidase). Surprisingly, as fungi may be part of the diet of earthworms, the activity of E. fetida triggered fungal growth during vermicomposting. We suggest that this activation is a key step leading to more intense and efficient cellulolysis during vermicomposting of organic wastes.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4

References

  1. Atalla, RH, Hackney, JM, Uhlin, I, Thompson, NS (1993) Hemicelluloses as structure regulators in the aggregation of native cellulose. Int J Biol Macromol 15: 109–112

    Article  CAS  PubMed  Google Scholar 

  2. Benitez, E, Sainz, H, Nogales, R (2005) Hydrolytic enzyme activities of extracted humic substances during the vermicomposting of a lignocellulosic olive waste. Bioresour Technol 96: 785–790

    Article  CAS  PubMed  Google Scholar 

  3. Brown, GG, Doube, BM (2004) Functional interactions between earthworms, microorganisms, organic matter, and plants. In: Edwards, CA (Ed.) Earthworm Ecology, 2nd ed. CRC Press, Boca Raton, pp 213–224

    Google Scholar 

  4. Cooke, A (1983) The effects of fungi on food selection by Lumbricus terrestris L. In: Satchell, JE (Ed.) Earthworm Ecology, Chapman & Hall, London, pp 365–373

    Google Scholar 

  5. de Boer, W, Folman, LB, Summerbell, RC, Boddy, L (2004) Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol Rev 29: 795–811

    Article  PubMed  CAS  Google Scholar 

  6. Domínguez, J (2004) State of the art and new perspectives in vermicomposting research. In: Edwards, CA (Ed.) Earthworm Ecology, 2nd ed. CRC Press, Boca Raton, pp 401–425

    Google Scholar 

  7. Edwards, CA (2004) Earthworm Ecology, 2nd ed. CRC Press, Boca Raton

    Google Scholar 

  8. Eivazi, F, Tabatabai, MA (1988) Glucosidases and galactosidases in soils. Soil Biol Biochem 20: 601–606

    Article  CAS  Google Scholar 

  9. Fischer, K, Hahn, D, Amann, RI, Daniel, O, Zeyer, J (1995) In situ analysis of the bacterial community in the gut of the earthworm Lumbricus terrestris L., by whole-cell hybridization. Can J Microbiol 41: 666–673

    CAS  Article  Google Scholar 

  10. Garrett, SD (1981) Soil Fungi and Soil Fertility. Pergamon Press, Oxford

    Google Scholar 

  11. Goering, HK, Van Soest, PJ (1970) Forage Fiber Analysis, Agr. Handbook No. 379. Agricultural Research Service, USDA, Washington, DC

    Google Scholar 

  12. Goyal, A, Ghosh, B, Eveleigh, D (1991) Characteristics of fungal cellulases. Bioresour Technol 36: 37–50

    Article  CAS  Google Scholar 

  13. Hatanaka, K, Ishioka, Y, Furuichi, E (1983) Cultivation of Eisenia fetida using dairy waste sludge cake. In: Satchell, JE (Ed.) Earthworm Ecology from Darwin to Vermiculture, Chapman and Hall, London, pp 323–329

    Google Scholar 

  14. Hayano, K (1986) Cellulase complex in tomato field soil: induction, localization and some properties. Soil Biol Biochem 18: 215–219

    Article  CAS  Google Scholar 

  15. Hayano, K, Tubakil, P (1985) Origin and properties of β-glucosidase activity of tomato-field soil. Soil Biol Biochem 17: 553–557

    Article  CAS  Google Scholar 

  16. Haynes, RJ, Fraser, PM, Piercy, JE, Tregurtha, RJ (2003) Casts of Aporrectodea caliginosa (Savigny) and Lumbricus rubellus (Hoffmeister) differ in microbial activity, nutrient availability and aggregate stability. Pedobiologia 47: 882–887

    Google Scholar 

  17. Hu, S, van Bruggen, AHC (1997) Microbial dynamics associated with multiphasic decomposition of 14C-labelled cellulose in soil. Microb Ecol 33: 134–143

    Article  CAS  PubMed  Google Scholar 

  18. Klamer, M, Baath, E (2004) Estimation of conversion factors for fungal biomass determination in compost using ergosterol and PFLA 18:2ω6,9. Soil Biol Biochem 36: 57–65

    Article  CAS  Google Scholar 

  19. Kristufek, V, Ravasz, K, Pizl, V (1992) Changes in densities of bacteria and microfungi during gut transit in Lumbricus rubellus and Aporrectodea caliginosa (Oligochaeta: Lumbricidae). Soil Biol Biochem 12: 1499–1500

    Google Scholar 

  20. Lattaud, C, Locati, S, Mora, P, Rouland, C (1997a) Origin and activities of glycolytic enzymes in the gut of the tropical geophagous earthworm Millsonia anomala from Lamto (Cote d'Ivoire). Pedobiologia 41: 242–251

    CAS  Google Scholar 

  21. Lattaud, C, Zhang, BG, Locati, S, Rouland, C, Lavelle, P (1997b) Activities of the digestive enzymes in the gut and in tissue culture of a tropical geophagous earthworm, Polipheretima elongata (Megascolecidae). Soil Biol Biochem 29: 335–339

    Article  CAS  Google Scholar 

  22. Lavelle, P, Spain, AV (2001) Soil Ecology. Kluwer Academic Publishers, London

    Google Scholar 

  23. Leschine, SB (1995) Cellulose degradation in anaerobic environments. Annu Rev Microbiol 49: 399–426

    Article  CAS  PubMed  Google Scholar 

  24. Loquet, M, Vinceslas, M (1987) Cellulolyse et ligninolyse liées au tube digestif d'Eisenia fetida andrei Bouché. Rev Ecol Biol Sol 24: 559–571

    CAS  Google Scholar 

  25. Lynd, LR, Weimer, PJ, van Zyl, WH, Pretorius, IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66: 506–577

    Article  CAS  PubMed  Google Scholar 

  26. McCarthy, AJ, Williams, ST (1992) Actinomycetes as agents of biodegradation in the environment—a review. Gene 115: 189–192

    Article  CAS  PubMed  Google Scholar 

  27. Moody, SA, Briones, MJI, Pierce, TG, Dighton, J (1995) Selective consumption of decomposing wheat straw by earthworms. Soil Biol Biochem 27: 1209–1213

    Article  CAS  Google Scholar 

  28. Nodar, R, Acea, MJ, Carballas, T (1992) Poultry slurry microbial population: composition and evolution during storage. Biores Technol 40: 29–34

    Article  CAS  Google Scholar 

  29. Pižl, V, Novakova, A (2003) Interactions between microfungi and Eisenia andrei (Oligochaeta) during cattle manure vermicomposting. Pedobiologia 47: 895–899

    Google Scholar 

  30. Potvin, C, Lechowicz, MJ, Tardif, S (1990) The statistical analysis of ecological response curves obtained from experiments involving repeated measures. Ecology 71: 1389–1400

    Article  Google Scholar 

  31. Richmond, PA (1991) Occurrence and functions of native cellulose. In: Haigler, CH, Weimer, JP (Eds.) Biosynthesis and Biodegradation of Cellulose. Dekker, New York, pp 5–23

    Google Scholar 

  32. Saito, M, Wada, H, Takay, Y (1990) Development of a microbial community on cellulose buried in waterlogged soil. Biol Fertil Soils 9: 301–305

    Article  Google Scholar 

  33. Salinitro, JP, Blake, IG, Muirhead, PA (1977) Isolation and identification of faecal bacteria from adult swine. Appl Environ Microbiol 33: 79–84

    Google Scholar 

  34. Scheu, S (1993) Cellulose and lignin decomposition in soils from different ecosystems on limestone as affected by earthworm processing. Pedobiologia 37: 167–177

    CAS  Google Scholar 

  35. Schinner, F, Von Mersi, W (1990) Xylanase-, CM-cellulase- and invertase activity in soil: an improved method. Soil Biol Biochem 22: 511–515

    Article  CAS  Google Scholar 

  36. Schönholzer, F, Hahn, D, Zeyer, J (1999) Origins and fate of fungi and bacteria in the gut of Lumbricus terrestris L. studied by image analysis. FEMS Microbiol Ecol 28: 235–248

    Google Scholar 

  37. Sinsabaugh, RL, Antibus, RK, Linkins, AE, McClaugherty, CA, Rayburn, L, Repert, D, Weiland, T (1992) Wood decomposition over a first order watershed: mass loss as a function of lignocellulase activity. Soil Biol Biochem 24: 743–749

    Article  CAS  Google Scholar 

  38. Sinsabaugh, RL, Linkins, AE (1988) Adsorption of cellulase components by leaf litter. Soil Biol Biochem 20: 927–931

    Article  CAS  Google Scholar 

  39. Sinsabaugh, RL, Linkins, AE (1993) Statistical modelling of litter decomposition from integrated cellulase activity. Ecology 74: 1594–1597

    Article  CAS  Google Scholar 

  40. Tiunov, A, Scheu, S (2000) Microfungal communities in soil, litter and casts of Lumbricus terrestris L. (Lumbricidae): a laboratory experiment. Appl Soil Ecol 14: 17–26

    Article  Google Scholar 

  41. Tiunov, AV, Scheu, S (2004) Carbon availability controls the growth of detritivores (Lumbricidae) and their effect on nitrogen mineralization. Oecologia 138: 83–90

    Article  PubMed  Google Scholar 

  42. Urbásek, F, Pižl, V (1991) Activity of digestive enzymes in the gut of five earthworm species (Oligochaeta: Lumbricidae). Rev Ecol Biol Sol 28: 461–468

    Google Scholar 

  43. Vance, ED, Brookes, PC, Jenkinson, DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19: 703–707

    Article  CAS  Google Scholar 

  44. Vinceslas-Akpa, M, Loquet, M (1997) Organic matter transformations in lignocellulosic waste products composted or vermicomposted (Eisenia fetida andrei): chemical analysis and 13C CPMAS NMR spectroscopy. Soil Biol Biochem 29: 751–758

    Article  CAS  Google Scholar 

  45. von Ende, CN (2001) Repeated-measures analysis. In: Scheiner, SM, Gurevitch, J (Eds.) Design and Analysis of Ecological Experiments, Oxford University Press, pp 134–157

  46. Whitehead, TR, Cotta, MA (2001) Characterisation and comparison of microbial populations in swine faeces and manure storage pits by 16S rDNA gene sequence analyses. Anaerobe 7: 181–187

    Article  CAS  Google Scholar 

  47. Young, JC (1995) Microwave-assisted extraction of the fungal metabolite ergosterol and total fatty acids. J Agric Food Chem 43: 2904–2910

    Article  CAS  Google Scholar 

  48. Zhang, BG, Li, GT, Shen, TS, Wang, JK, Sun, Z (2000) Changes in microbial biomass C, N and P and enzyme activities in soil incubated with the earthworms Metaphire guillelmi or Eisenia fetida. Soil Biol Biochem 32: 2055–2062

    Article  CAS  Google Scholar 

  49. Zhang, BG, Rouland, C, Lattaud, C, Lavelle, P (1993) Activity and origin of digestive enzymes in the gut of tropical earthworm Pontoscolex corethurus. Eur J Soil Biol 29: 7–11

    CAS  Google Scholar 

  50. Zhu, J (2000) A review of microbiology in swine manure odor control. Agric Ecosyst Environ 78: 93–106

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by CICYT (AGL2003-01570) and Xunta de Galicia (PGIDIT03PXIB30102PR) grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Aira.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Aira, M., Monroy, F. & Domínguez, J. Eisenia fetida (Oligochaeta, Lumbricidae) Activates Fungal Growth, Triggering Cellulose Decomposition During Vermicomposting. Microb Ecol 52, 738–747 (2006). https://doi.org/10.1007/s00248-006-9109-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-006-9109-x

Keywords

  • Cellulase
  • Microbial Biomass
  • Ergosterol
  • Cellulase Activity
  • Neutral Detergent Fiber