Advertisement

Microbial Ecology

, Volume 52, Issue 1, pp 10–18 | Cite as

Soil Bacteria are Differentially Affected by the Resin of the Medicinal Plant Pseudognaphalium vira vira and Its Main Component Kaurenoic Acid

  • F. Gil
  • R. De la Iglesia
  • L. Mendoza
  • B. González
  • M. WilkensEmail author
Article

Abstract

The diterpenoid kaurenoic acid is the main component of the resin from the medicinal plant Pseudognaphalium vira vira. As some diterpenoids have antimicrobial properties, the effect of this resin and the kaurenoic acid on soil bacteria was studied. The resin of P. vira vira and purified kaurenoic acid were two to four times more effective as antibacterial agents with Gram-positive than with Gram-negative soil isolates. The chemical stability of kaurenoic acid and the antibacterial activity of both the resin and the diterpenoid were studied in microcosms containing plant-associated soil. After 15 days of incubation, the diterpenoid was stable, as determined by 1H nuclear magnetic resonance and thin-layer chromatography, and soil extracts still exhibited antibacterial activity. However, after 30 days of incubation, loss of antibacterial activity of soil extracts correlated with removal or chemical modification of kaurenoic acid. The effect of the resin or this diterpenoid on the soil bacteria community was analyzed by the terminal restriction fragment length polymorphisms technique. After 15 days of incubation, the resin and the pure compound caused significant changes in the soil bacterial community. The relative abundance of specific bacterial groups was differentially affected by the resin components, being the effects with the resin stronger than with the kaurenoic acid. After 30 days of incubation, these changes mostly reverted. These results indicate that a plant resin containing diterpenoid compounds plays a significant role controlling specific groups of microorganisms in the soil associated with the plant.

Keywords

Kaurenoic acid soil bacteria diterpenoids Pseudognaphalium vira vira antibacterial activity 

Notes

Acknowledgments

This work was supported by Dirección de Investigación Científica y Tecnológica (DICYT) from the Universidad de Santiago de Chile and by FONDAP-FONDECYT (grant 1501-0001, program 7). R.D.I. is a MECESUP Ph.D. fellow.

References

  1. 1.
    Amann, RI, Ludwig, W, Schleifer, KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59: 143–169PubMedGoogle Scholar
  2. 2.
    Blackwood, CB, Marsh, TL, Kim, S-H, Paul, EA (2003) Terminal restriction fragment length polymorphism data analysis for quantitative comparison of microbial communities. Appl Environ Microbiol 69: 926–932PubMedCrossRefGoogle Scholar
  3. 3.
    Braune, A, Gutschow, M, Engst, W, Blaut, M (2001) Degradation of quercetin and luteolin by Eubacterium ramulus. Appl Environ Microbiol 67: 5558–5567PubMedCrossRefGoogle Scholar
  4. 4.
    Cole, JR, Chai, B, Marsh, TL, Farris, RJ, Wang, Q, Kulam, SA, Chandra, S, McGarrell, DM, Schmidt, TM, Garrity, GM, Tiedje, JM (2003) The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res 31: 442–443PubMedCrossRefGoogle Scholar
  5. 5.
    Ghisalberti, E (1997) The biological activity of naturally occurring kaurane diterpenes. Fitoterapia 68: 303–324Google Scholar
  6. 6.
    Haraguchi, H, Oike, S, Muroi, H, Kubo, I (1996) Mode of antibacterial action of totarol, a diterpene from Podocarpus nagi. Planta Med 62: 122–125PubMedCrossRefGoogle Scholar
  7. 7.
    Haraguchi, H, Tanimoto, K, Tamura, Y, Mitzutani, K, Kinoshita, T (1998) Mode of antibacterial action of retrochalcone from Glycyrrhiza inflata. Phytochemistry 48: 125–129PubMedCrossRefGoogle Scholar
  8. 8.
    Hoffmann, A, Farga, C, Lastra, J, Veghazi, E (1992) Plantas medicinales de uso común en Chile. Fundación Claudio Gay, ChileGoogle Scholar
  9. 9.
    Jordán, M, Sánchez, MA, Padilla, L, Céspedes, R, Osses, M, González, B (2002) Kraft mill residues on Monterrey pine growth and soil microbial activity. J Environ Qual 31: 1004–1009PubMedCrossRefGoogle Scholar
  10. 10.
    Kent, AD, Smith, DJ, Benson, BJ, Triplett, EW (2003) Web-based phylogenetic assignment tool for analysis of terminal restriction fragment length polymorphism profiles of microbial communities. Appl Environ Microbiol 69: 6768–6776PubMedCrossRefGoogle Scholar
  11. 11.
    Knowles, R (1997) Beneficial microbial soil and plant interactions. In: Martins, MT, Sato, MIZ, Tiedje, JM, Hagler, LCN, Döbereiner, J, Sanchez, PS (Eds.) Progress in Microbial Ecology, Brazilian Society for Microbiology, São Paulo, pp 355–359Google Scholar
  12. 12.
    Liu, WT, Marsh, TL, Cheng, H, Forney, LJ (1997) Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol 63: 4516–4522PubMedGoogle Scholar
  13. 13.
    Margalef, R (1958) Information theory in ecology. Gen Syst 3: 36–71Google Scholar
  14. 14.
    Massieux, B, Boivin, ME, van den Ende, FP, Langenskiöld, J, Marvan, P, Barranguet, C, Admiraal, W, Laanbroek, HJ, Zwart, G (2004) Analysis of structural and physiological profiles to assess the effects of Cu on biofilm microbial communities. Appl Environ Microbiol 70: 4512–4521PubMedCrossRefGoogle Scholar
  15. 15.
    Mendoza, L, Urzúa, A (1998) Minor flavonoids and diterpenoids in the resinous trichome exudate from Pseudognaphalium cheiranthifolium, P. heterotrichium, P. vira vira and P. robustum. Biochem Syst Ecol 26: 469–471CrossRefGoogle Scholar
  16. 16.
    Mendoza, L, Wilkens, M, Urzúa, A (1997) Antimicrobial study of the resinous exudates and of diterpenoids and flavonoids isolated from some Chilean Pseudognaphalium (Asteraceae). J Ethnopharmacol 58: 85–88PubMedCrossRefGoogle Scholar
  17. 17.
    Nikaido, H (1999) Microdermatology: cell and surface in the interaction of microbes with the external world. J Bacteriol 181: 4–8PubMedGoogle Scholar
  18. 18.
    Rahman, A, Nasreen, A, Akhtar, F, Shekhani, M, Clardy, J, Parvez, M, Choudhary, MI (1997) Antifungal diterpenoid alkaloids from Delphinium denudatum. J Nat Prod 60: 472–474CrossRefGoogle Scholar
  19. 19.
    Tada, M, Okuno, K, Chiba, K, Ohnishi, E, Yoshii, T (1994) Antiviral diterpenes from Salvia officinalis. Phytochemistry 35: 539–541CrossRefGoogle Scholar
  20. 20.
    Urzúa, A, Torres, R, Bueno, C, Mendoza, L (1995) Flavonoids and diterpenoids in the trichome resinous exudate from Pseudognaphalium cheiranthifolium, P. heterotrichium and P. vira vira. Biochem Syst Ecol 23: 459CrossRefGoogle Scholar
  21. 21.
    Urzúa, A (2004) Mono and sesquiterpenes in the trichome secreted exudate from Pseudognaphalium cheiranthifolium, P. vira vira and P. robustum. Biochem Syst Ecol 32: 211–214CrossRefGoogle Scholar
  22. 22.
    Wilkens, M, Alarcón, C, Urzúa, A, Mendoza, L (2002) Characterization of the bactericidal activity of the natural diterpene kaurenoic acid. Planta Med 68: 452–454PubMedCrossRefGoogle Scholar
  23. 23.
    Yang, Y-H, Yao, J, Hu, S, Qi, Y (2000) Effects of agricultural chemicals on DNA sequence diversity of soil microbial community: a study with RAPD marker. Microb Ecol 39: 72–79PubMedCrossRefGoogle Scholar
  24. 24.
    Yu, Z, Stewart, GR, Mohn, W (2000) Apparent contradiction: psychrotolerant bacteria from hydrocarbon-contaminated arctic tundra soils that degrade diterpenoids synthesized by trees. Appl Environ Microbiol 66: 5148–5154PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • F. Gil
    • 1
  • R. De la Iglesia
    • 2
    • 3
  • L. Mendoza
    • 4
  • B. González
    • 2
    • 3
  • M. Wilkens
    • 1
    Email author
  1. 1.Departamento de Biología, Facultad de Química y BiologíaUniversidad de Santiago de ChileSantiagoChile
  2. 2.Departamento de Genética Molecular y Microbiología, Facultad de Ciencias BiológicasP. Universidad Católica de ChileSantiagoChile
  3. 3.Center for Advanced Studies in Ecology and Biodiversity, Facultad de Ciencias BiológicasP. Universidad Católica de ChileSantiagoChile
  4. 4.Departamento de Química de los Materiales, Facultad de Química y BiologíaUniversidad de Santiago de ChileSantiagoChile

Personalised recommendations