Microbial Ecology

, Volume 53, Issue 2, pp 355–365 | Cite as

Bacterial Uptake by the Marine Sponge Aplysina aerophoba

Article

Abstract

Sponges (Porifera) are filter feeders that take up microorganisms from seawater and digest them by phagocytosis. At the same time, many sponges are known to harbor massive consortia of symbiotic microorganisms, which are phylogenetically distinct from those in seawater, within the mesohyl matrix. In the present study, feeding experiments were performed to investigate whether phylogenetically different bacterial isolates, hereafter termed “food bacteria,” microbial seawater consortia, and sponge symbiont consortia are taken up and processed differently by the host sponge. Aplysina aerophoba retained high numbers of bacterial isolates and microbial seawater consortia with rates of up to 2.76 × 106 bacteria (g sponge wet weight)–1 h–1, whereas the retention of sponge symbionts was lower by nearly two orders of magnitude [5.37 × 104 bacteria (g sponge wet weight)−1 h–1]. In order to visualize the processing of a food bacterium within sponge tissues, the green fluorescent protein-labeled Vibrio strain MMW1, which had originally been isolated from A. aerophoba, was constructed. Incubation of this strain with A. aerophoba and subsequent visualization in tissue cryosections showed its presence in the choanocytes and/or endopinacocytes lining the canals but, unlike latex beads, not in deeper regions of the mesohyl, which suggests digestion of the bacteria upon contact with the host. Denaturing gradient gel electrophoresis (DGGE) was performed on the incubation seawater to monitor the changes in phylogenetic composition after incubation of the sponge with either seawater or sponge symbiont consortia. However, the DGGE experiment provided no evidence for selective processing of individual lineages by the host sponge. In conclusion, this study extends early studies by Wilkinson et al. (Proc R Soc London B 220:519–528, 1984) that sponges, here A. aerophoba, are able to differentiate between food bacteria and their own bacterial symbionts.

Keywords

Sponge Porifera Symboint Microbial community Bacterial uptake 

References

  1. 1.
    Ausubel, FM, Brent, R, Kingston, RE, Moore, DD, Seidman, JG, Smith, JA, Struhl K (Eds.) (2003) Preparation of genomic DNA from bacteria. In: Current Protocols in Molecular Biology, vol. 1. John Wiley and Sons, Inc, New York, Chap. 4.2Google Scholar
  2. 2.
    Bell, AH, Bergquist, PR, Battershill, CN (1999) Feeding biology of Polymastia croceus. Mem Queensland Mus 44: 51–56Google Scholar
  3. 3.
    Celli, J, Finlay, BB (2002) Bacterial avoidance of phagocytosis. Trends Microbiol 10: 232–237PubMedCrossRefGoogle Scholar
  4. 4.
    de Bary HA (1879) Die Erscheinung der Symbiose. In: Trübner, KJ (Ed.) Versammlung deutscher Naturforscher und Ärzte zu Cassel. Trübner, StrassburgGoogle Scholar
  5. 5.
    Ducklow, H (2000) Bacterial production and biomass in the oceans. In: Kirchman, DL (Eds.) Microbial Ecology of the Oceans. Wiley, New York, pp 85–120Google Scholar
  6. 6.
    Fieseler L (2005) Entdeckung des neuen Candidatus Phylums Poribacteria. PhD thesis, Universität Würzburg, GermanyGoogle Scholar
  7. 7.
    Fieseler, L, Horn, M, Wagner, M, Hentschel, U (2004) Discovery of a novel candidate phylum ‘Poribacteria’ in marine sponges. Appl Environ Microbiol 70: 3724–3732PubMedCrossRefGoogle Scholar
  8. 8.
    Fieseler, L, Quaiser, A, Schleper, C, Hentschel, U (2006) Analysis of the first genome fragment from the marine sponge-associated, novel candidate phylum Poribacteria by environmental genomics. Environ Microbiol 8: 612–624PubMedCrossRefGoogle Scholar
  9. 9.
    Friedrich, AB, Fischer, I, Proksch, P, Hacker, J, Hentschel, U (2001) Temporal variation of the microbial community associated with the Mediterranean sponge Aplysina aerophoba. FEMS Microbiol Ecol 38: 105–113CrossRefGoogle Scholar
  10. 10.
    Hagstrom, A, Pommier, T, Rohwer, F, Simu, K, Stolte, W, Svensson, D, Zweifel, UL (2002) Use of 16S ribosomal DNA for delineation of marine bacterioplankton species. Appl Environ Microbiol 68: 3628–3633PubMedCrossRefGoogle Scholar
  11. 11.
    Hentschel, U, Usher, KM, Taylor, MW (2006) Marine sponges as microbial fermenters. FEMS Microb Ecol 55: 167–177CrossRefGoogle Scholar
  12. 12.
    Hentschel, U, Schmid, M, Wagner, M, Fieseler, L, Gernert, C, Hacker, J (2001) Isolation and phylogenetic analysis of bacteria with antimicrobial activities from the Mediterranean sponge Aplysina aerophoba and Aplysina cavernicola. FEMS Microbiol Ecol 35: 305–312PubMedCrossRefGoogle Scholar
  13. 13.
    Hentschel, U, Fieseler, L, Wehrl, M, Gernert, C, Steinert, M, Hacker, J, Horn, M (2003) Microbial diversity of marine sponges. In: Müller, WEG (Ed.) Molecular Marine Biology of Sponges. Springer, Heidelberg, pp 59–88Google Scholar
  14. 14.
    Hentschel, U, Hopke, J, Horn, M, Friedrich, AB, Wagner, M, Hacker, J, Moore, BS (2002) Molecular evidence for a uniform microbial community in sponges from different oceans. Appl Environ Microbiol 68: 4431–4440PubMedCrossRefGoogle Scholar
  15. 15.
    Heuner, K, Steinert, M (2003) The flagellum of Legionella pneumophila and its link to the expression of the virulent phenotype. Int J Med Microbiol 293: 133–143PubMedCrossRefGoogle Scholar
  16. 16.
    Hill, RT (2004) Microbes from marine sponges: a treasure trove of biodiversity for natural products discovery. In: Bull, AT (Ed.) Microbial Diversity and Bioprospecting. ASM Press, Washington, DC, pp 177–190Google Scholar
  17. 17.
    Imhoff, JF, Stöhr, R (2003) Sponge-associated bacteria: general overview and special aspects of bacteria associated with Halichondria panicea. In: Müller, WEG (Ed.) Molecular Marine Biology of Sponges. Springer, Heidelberg, pp 35–57Google Scholar
  18. 18.
    Milanese, M, Chelossi, E, Manconi, R, Sara, A, Sidri, M, Pronzato, R (2003) The marine sponge Chondrilla nucula Schmidt, 1862 as an elective candidate for bioremediation in integrated aquaculture. Biomol Eng 20: 363–368PubMedCrossRefGoogle Scholar
  19. 19.
    Millikan, DS, Ruby, EG (2002) Alterations in Vibrio fischeri motility correlate with a delay in symbiosis initiation and are associated with additional symbiotic colonization defects. Appl Environ Microbiol 68: 2519–2528PubMedCrossRefGoogle Scholar
  20. 20.
    Muyzer, G, Brinkhoff, T, Nübel, U, Santegoeds, C, Schäfer, H, Wawer, C (1998) Denaturing gradient gel electrophoresis (DGGE) in microbial ecology. Mol Microb Ecol 3.4.4: 1–27Google Scholar
  21. 21.
    Pile, AJ (1997) Finding Reiswig's missing carbon: quantification of sponge feeding using dual-beam flow cytometry. Proc Int Coral Reef Symp 2: 1403–1410Google Scholar
  22. 22.
    Pile, AJ, Patterson, MR, Witman, JD (1996) In situ grazing on plankton <10 μm by the boreal sponge Mycale lingua. Mar Ecol Prog Ser 141: 95–102Google Scholar
  23. 23.
    Pile, AJ, Grant, A, Hinde, R, Borowitzka, MA (2003) Heterotrophy on ultraplankton communities is an important source of nitrogen for a sponge–rhodophyte symbiosis. J Exp Biol 206: 4533–4538PubMedCrossRefGoogle Scholar
  24. 24.
    Pimentel-Elardo, S, Wehrl, M, Friedrich, AB, Jensen, PR, Hentschel, U (2003) Isolation of planctomycetes from Aplysina sponges. Aquat Microb Ecol 33: 239–245Google Scholar
  25. 25.
    Price, NP (1999) Carbohydrate determinants of Rhizobium–legume symbioses. Carbohydr Res 317: 1–9PubMedCrossRefGoogle Scholar
  26. 26.
    Reiswig, HM (1971) Particle feeding in natural populations of three marine demosponges. Biol Bull 141: 568–226CrossRefGoogle Scholar
  27. 27.
    Reiswig, HM (1974) Water transport, respiration and energetics of three tropical marine sponges. J Exp Mar Biol Ecol 14: 231–249CrossRefGoogle Scholar
  28. 28.
    Reiswig, HM (1975) Bacteria as food for temperate-water marine sponges. Can J Zool 53: 582–589Google Scholar
  29. 29.
    Ribes, M, Coma, R, Gili, JM (1999) Natural diet and grazing rate of the temperate sponge Dysidea avara (Demospongiae, Dendroceratida) throughout an annual cycle. Mar Ecol Prog Ser 176: 179–190Google Scholar
  30. 30.
    Rottmann, M, Schröder, HC, Gramzow, M, Renneisen, K, Kurelec, B, Dorn, A, Friese, U, Müller, WEG (1987) Specific phosphorylation of proteins in pore complex-laminae from the sponge Geodia cydonium by the homologous aggregation factor and phorbol ester. Role of the protein kinase C in the phosphorylation of DNA topoisomerase II. EMBO J 6: 3939–3944PubMedGoogle Scholar
  31. 31.
    Scheuermayer, M, Pimentel-Elardo, S, Fieseler, L, Grozdanov, L, Hentschel, U (2006) Microorganisms of sponges: phylogenetic diversity and biotechnological potential. In: Proksch, P, Müller, WEG (Eds.) Biotechnology of Marine Natural Products. Horizon Scientific, UK, pp 289–312Google Scholar
  32. 32.
    Teeyapant, R, Woerdenbag, HJ, Kreis, P, Hacker, J, Wray, V, Witte, L, Proksch, P (1993) Antibiotic and cytotoxic activity of brominated compounds from the marine sponge Verongia aerophoba. Z Naturforsch [C] 48: 939–945Google Scholar
  33. 33.
    Thiel, V, Imhoff, JF (2003) Phylogenetic identification of bacteria with antimicrobial activities isolated from Mediterranean sponges. Biomol Eng 20: 421–423PubMedCrossRefGoogle Scholar
  34. 34.
    Thoms, C, Horn, M, Wagner, M, Hentschel, U, Proksch, P (2003) Monitoring microbial diversity and natural products profiles of the sponge Aplysina cavernicola following transplantation. Mar Biol 142: 685–692Google Scholar
  35. 35.
    Turon, X, Galera, J, Uriz, MJ (1997) Clearance rates and aquiferous systems in two sponges with contrasting life-history strategies. J Exp Zool 278: 22–36CrossRefGoogle Scholar
  36. 36.
    Vacelet, J, Donadey, C (1977) Electron microscope study of the association between some sponges and bacteria. J Exp Mar Ecol 30: 301–314CrossRefGoogle Scholar
  37. 37.
    Venter, JC, Remington, K, Heidelberg, JF, Halpern, AL, Rusch, D, Eisen, JA, Wu, D, Paulsen, I, Nelson, KE, Nelson, W, Fouts, DE, Levy, S, Knap, AH, Lomas, MW, Nealson, K, White, O, Peterson, J, Hoffman, J, Parsons, R, Baden-Tillson, H, Pfannkoch, C, Rogers YH, Smith, HO (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304: 66–74PubMedCrossRefGoogle Scholar
  38. 38.
    Wadstrom, T, Ljungh, A (1999) Glycosaminoglycan-binding microbial proteins in tissue adhesion and invasion: key events in microbial pathogenicity. J Med Microbiol 48: 223–233PubMedCrossRefGoogle Scholar
  39. 39.
    Webster N, Hill RT (2001) The culturable microbial community of the Great Barrier Reef sponge Rhopaloeides odorabile is dominated by an α–proteobacterium. Mar Biol 138: 843–851CrossRefGoogle Scholar
  40. 40.
    Wehrl, M (2001) Untersuchungen zur Interaktion des marinen Schwammes A. aerophoba mit assoziierten Mikroorganismen. Masters thesis, Universität Würzburg, GermanyGoogle Scholar
  41. 41.
    Wilkinson CR, Garrone G, Vacelet J (1984) Marine sponges discriminate between food bacteria and bacterial symbionts: electron microscope radioautography and in situ evidence. Proc R Soc London B 220: 519–528CrossRefGoogle Scholar
  42. 42.
    Wilkinson, CR, Nowak, M, Austin, B, Colwell, RR (1981) Specificity of bacterial symbionts in Mediterranean and Great Barrier Reef Sponges. Microb Ecol 7: 13–21CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Zentrum für Infektionsforschung, Röntgenring 11Universität WürzburgWürzburgGermany
  2. 2.Institut für Molekulare Infektionsbiologie, Röntgenring 11Universität WürzburgWürzburgGermany

Personalised recommendations