Skip to main content
Log in

Seasonal Variations in Planktonic Community Structure and Production in an Atlantic Coastal Pond: The Importance of Nanoflagellates

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The structure and summertime production of planktonic communities and the role of nondiatom planktonic cells were studied in coastal ponds, which are areas traditionally used for fattening and greening table-sized oysters. The abundance and biomass of nano–microplanktonic protists were determined at weekly intervals between February 1998 and February 1999 in a coastal pond without oysters in the French Atlantic coast near La Rochelle. The production of these microbiotas was determined in the summer period. The structure of plankton communities revealed the following observations: (1) microphytoplanktonic cells were mostly diatoms and dinoflagellates, (2) microzooplanktonic cells were mainly ciliates, and (3) nanoplanktonic cells were represented by pigmented (80–90% of the nanoplankton biomass) and colorless nanoflagellates. Diatoms were dominated by Naviculiineae. Dinoflagellates were dominated by Peridiniales. Oligotrichida were predominant in the ciliate community. Protist biomass levels were nine times higher from April to August (summer period 1033 μg C L−1) than from September to March (winter period 114 μg C L−1). Whatever the season, nanoflagellates were dominant in the water column (66 and 53% of the entire protist biomass in the summer and winter periods, respectively). Nanoflagellates represented the highest production of nano–microplanktonic communities (76% of carbon protist production) in the coastal pond in summer and showed the shortest generation time (7.1 h). Dinoflagellates came after nanoflagellates in production (19.5% of carbon protist production). Diatoms represented only a supplementary carbon resource available for higher trophic levels, whereas, until now, they were considered as the principal food of oysters in coastal ponds. Ciliates were a small source of carbon, but their growth rate was high. We suggest, first, that nanoflagellates represented the primary resource available in the pond and could constitute an important food resource for higher trophic levels, such as oysters, farmed in this type of pond. Overall, the system appeared to be more autotrophic than heterotrophic. Because inorganic nutrients are quickly exhausted in a semiclosed pond, pigmented flagellates dominated the carbon biomass, production and biomass of bacteria were high (thus, the microbial food web appeared to be active in this pond), and mixotrophy seemed to be an important trophic mode there.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Azam, F, Fenchel, T, Field, JG, Gray, JS, Meyer-Reil, LA, Thingstad, F (1983) The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 10: 257–263

    Google Scholar 

  2. Barillé, L, Prou, J, Héral, M, Bougrier, S (1993) No influence of food quality, but ration-dependent retention efficiencies in the Japanese oyster Crassostrea gigas. J Exp Mar Biol Ecol 171: 91–106

    Article  Google Scholar 

  3. Berk, SG, Brownlee, DC, Heinle, DR, Kling, Colwell, RR (1977) Ciliates as a food source for marine planktonic copepods. Microb Ecol 4: 27–40

    Article  Google Scholar 

  4. Blanchard, G, Sauriau, PG, Cariou-Le Gall, V, Gouleau, D, Garet, MJ, Olivier, F (1997) Kinetics of tidal resuspension of microbiota: testing the effects of sediment cohesiveness and bioturbation using flume experiments. Mar Ecol Prog Ser 151: 17–25

    Google Scholar 

  5. Carlough, LA, Meyer, JL (1989) Protozoans in two southeastern blackwater rivers and their importance to trophic transfer. Limnol Oceanogr 34: 163–177

    Google Scholar 

  6. Caron, DA (1983) Technique for enumeration of heterotrophic and phototrophic nanoplankton, using epifluorescence microscopy, and comparison with other procedures. Appl Environ Microbiol 46: 491–498

    PubMed  CAS  Google Scholar 

  7. Chrétiennot-Dinet, MJ, Guillocheau, N (1987) Etude des diatomées d'écosystèmes marins côtiers. Observations nouvelles en microscopie électronique. Cah Biol Mar 28: 271–279

    Google Scholar 

  8. Crottereau, C (1999) Dynamique des populations bactériennes dans un marais maritime atlantique: contribution des activités ectoproteolytique et d'uptake des acides aminés à la production bactérienne. PhD Océanologie, Université d'Aix-Marseille II, p 216

  9. Delmas, D, Frikha, MG, Reymond, H, Linley, EAS, Collos, Y (1992) Long-term microbial community dynamics in a coastal marine pond. Mar Microb Food Webs 6: 39–54

    Google Scholar 

  10. Dolan, JR (1991) Guilds of ciliate microzooplankton in the Chesapeake Bay. Estuar Coast Shelf Sci 33: 137–152

    Article  Google Scholar 

  11. Dupuy, C, Le Gall, S, Hartmann, HJ, Bréret, M (1999) Retention of ciliates and flagellates by the oyster Crassostrea gigas in French Atlantic coastal ponds: protists as a trophic link between bacterioplankton and benthic suspension-feeders. Mar Ecol Prog Ser 177: 165–175

    Google Scholar 

  12. Epstein, SS, Shiaris, MP (1992) Size-selective grazing of coastal bacterioplankton by natural assemblages of pigmented flagellates, colorless flagellates, and ciliates. Microb Ecol 23: 211–225

    Article  Google Scholar 

  13. Fenchel, T (1988) Ecology of Protozoa—The Biology of Free-Living Phagotrophic Protists. Springer-Verlag, Berlin

    Google Scholar 

  14. Fenchel, T, Jonsson, PR (1988) The functional biology of Strombidium sulcatum, a marine oligotrich ciliate (Ciliophora, Oligotrichina). Mar Ecol Prog Ser 48: 1–15

    Google Scholar 

  15. Ferrier-Pagès, C, Rassoulzadegan, F (1994) Seasonal impact of the microzooplankton on pico- and nanoplankton growth rates in the northwest Mediterranean Sea. Mar Ecol Prog Ser 108: 283–294

    Google Scholar 

  16. Ferrier-Pagès, C, Gattuso, JP (1998) Biomass, production and grazing rates of pico- and nanoplankton in coral reef waters (Miyako Island, Japan). Microb Ecol 35: 46–57

    Article  PubMed  Google Scholar 

  17. Frikha, MG, Linley, EAS, Delmas, D (1987) Evolution annuelle et saisonnière de la microbiomasse d'une claire à huîtres : importance des populations bactérioplanctoniques. Oceanis 13: 433–447

    CAS  Google Scholar 

  18. Gaines, G, Elbrächter, M (1987) Heterotrophic nutrition. In: Taylor, FJR (Ed.) The Biology of Dinoflagellates, Blackwell Scientific Publications, Oxford, pp 224–268

    Google Scholar 

  19. Gifford, DJ, Dagg, MJ (1991) The microzooplankton-mesozooplankton link: consumption of planktonic protozoa by the calanoid copepods Acartia clausi Dana and Neocalanus plumchrus Murukawa. Mar Microb Food Webs 5: 161–177

    Google Scholar 

  20. Haas, LW (1982) Improved epifluorescence microscopy for observing planktonic microorganisms. Ann Inst Océanogr 58: 261–266

    Google Scholar 

  21. Hall, JA, Barrett, DP, James, MR (1993) The importance of phytoflagellate, heterotrophic flagellate and ciliate grazing on bacteria and picophytoplankton sized prey in a coastal marine environment. J Plankton Res 15: 1075–1086

    Article  Google Scholar 

  22. Hartmann, HJ, Taleb, H, Aleya, L, Lair, N (1993) Predation on ciliates by the suspension-feeding calanoid copepod Acanthodiaptomus denticornis. Can J Fish Aquat Sci 50: 1382–1393

    Article  Google Scholar 

  23. Havskum, H, Riemann, B (1996) Ecological importance of bacterivorous, pigmented flagellates (mixotrophs) in the Bay of Aarthus, Denmark. Mar Ecol Prog Ser 137: 251–263

    Google Scholar 

  24. Héral, M (1987) Shellfish Culture Development and Management—Aquaculture International Seminar, La Rochelle 4–9 mars 1985. Evaluation of the Carrying Capacity of Molluscan Shellfish Ecosystems. IFREMER, Brest

  25. Jonsson, PR, Tiselius, P (1990) Feeding behaviour, prey detection and capture efficiency of the copepod Acartia tonsa feeding on planktonic ciliates. Mar Ecol Prog Ser 60: 35–44

    Google Scholar 

  26. Kahl, A (1931) Urtiere oder protozoa. In: Dahl, F, Dahl, M, Bischoff, H (Eds.) Die Tierwelt Deutschlands und der angrenzenden Meeresteile. Gustav Fischer, Jena

    Google Scholar 

  27. Klaveness, D (1992) Augmentation of the food supply for oyster larvae via bacterivorous flagellates: possible implications for larval breeding and oyster pond management. Aquac Fish Manage 23: 591–597

    Google Scholar 

  28. Korringa, P (1976) Farming the cupped oysters of the genus Crassostrea. A multidisciplinary treatise. Developments in Aquaculture and Fisheries Science, vol. 2. Elsevier Scient Publ Comp, Amsterdam

    Google Scholar 

  29. Landry, MR, Hassett, RP (1982) Estimating the grazing impact of marine micro-zooplankton. Mar Biol 67: 283–288

    Article  Google Scholar 

  30. Landry, MR, Kirshtein, J, Constantinou, J (1995) A refined dilution technique for measuring the community grazing impact of microzooplankton with experimental tests in the central equatorial Pacific. Mar Ecol Prog Ser 20: 53–63

    Google Scholar 

  31. Leakey, RJG, Burkill, PH, Sleigh, MA (1994) A comparison of fixatives for the estimation of abundance and biovolume of marine planktonic ciliate populations. J Plankton Res 16: 375–389

    Article  Google Scholar 

  32. Leakey, RJG, Burkill, PH, Sleigh, MA (1996) Planktonic ciliates in the northwestern Indian Ocean: their abundance and biomass in waters of contrasting productivity. J Plankton Res 18: 1063–1071

    Article  Google Scholar 

  33. Le Gall, S, Bel Hassen, M, Le Gall, P (1997) Ingestion of a bacterivorous ciliate by the oyster Crassostrea gigas: protozoa as a trophic link between picoplankton and benthic suspension-feeders. Mar Ecol Prog Ser 152: 301–306

    Google Scholar 

  34. Lee, JJ, Hutner, SH, Bovee, EC (Eds.) (1985) An Illustrated Guide to the Protozoa. Allen Press, Lawrence, KS, p 615

  35. Lovejoy, C, Vincent, WF, Frenette, JJ, Dodson, JJ (1993) Microbial gradients in a turbid estuary: application of a new method for protozoan community analysis. Limnol Oceanogr 38: 1295–1303

    Article  Google Scholar 

  36. Malone, TC, Ducklow, HW (1990) Microbial biomass in the coastal plume of Chesapeake Bay: phytoplankton–bacterioplankton relationships. Limnol Oceanogr 35: 296–312

    CAS  Google Scholar 

  37. Nezan, E (1996) Surveillance du phytoplancton marin: manuel illustré adapté à la formation des analystes. IFREMER, Brest, p 77

    Google Scholar 

  38. Ohman, MD, Snyder, RA (1991) Growth kinetics of the omnivorous oligotrich ciliate Strombidium sp. Limnol Oceanogr 36: 922–935

    Google Scholar 

  39. Paulmier, G (1997) Tintinnides (Ciliophora, Oligotrichida, Tintinnina) de l'atlantique boréal, de l'océan indien et de quelques mers adjacentes: Mediterranée, mer Caraïbe, mer Rouge. Inventaires et distribution. Observations basées sur les loricas. IFREMER, Brest, p 126

    Google Scholar 

  40. Pierce, RW, Turner, JT (1994) Plankton studies in Buzzards Bay, Massachusetts, USA. III. Dinoflagellates, 1987 to 1988. Mar Ecol Prog Ser 112: 225–234

    Google Scholar 

  41. Pomeroy, LR (1974) The ocean's food web, a changing paradigm. Bioscience 24: 499–504

    Article  Google Scholar 

  42. Putt, M, Stoecker, DK (1989) An experimentally determined carbon:volume ratio for marine “oligotrichous” ciliates from estuarine and coastal waters. Limnol Oceanogr 34: 1097–1103

    Google Scholar 

  43. Ricard, M (1987) Atlas du phytoplancton, vol. 2. Eds du CNRS, Paris, p 297

  44. Riisgård, HU (1988) Efficiency of particle retention and filtration rate in 6 species of Northeast American bivalves. Mar Ecol Prog Ser 45: 217–223

    Google Scholar 

  45. Rincé, Y (1978) Intervention des diatomées dans l'écologie des claires ostréicoles dans la baie de Bourgneuf. PhD Biologie Marine, Nantes, p 203

    Google Scholar 

  46. Robert, JM, Maestrini, SY, Dréno, JP, Gonzalez-Rodriguez, E (1979) Estimation au moyen de tests biologiques de la fertilité pour trois diatomées des eaux des claires à huîtres de Vendée. Oceanol Acta 2: 275–286

    CAS  Google Scholar 

  47. Robert, JM (1983) Fertilité des eaux des claires ostréicoles et verdissement: utilisation de l'azote par les diatomées dominantes. PhD Sciences, Nantes

    Google Scholar 

  48. Sanders, RW, Porter, KG, Bennett, SJ, DeBiase, AE (1989) Seasonal patterns of bacterivory by flagellates, ciliates, rotifers and cladocerans in a freshwater community. Limnol Oceanogr 34: 673–687

    Article  Google Scholar 

  49. Sherr, EB, Sherr, BF, Paffenhöfer, GA (1986) Phagotrophic protozoa as food for metazoans: a “missing” trophic link in marine pelagic food webs? Mar Microb Food Webs 1: 61–80

    Google Scholar 

  50. Sherr, BF, Sherr, EB, Fallon, RD (1987) Use of monodispersed, fluorescently labeled bacteria to estimate in situ protozoan bacterivory. Appl Environ Microbiol 53: 958–965

    PubMed  CAS  Google Scholar 

  51. Sherr, BF, Sherr, EB, Pedros-Alio, C (1989) Simultaneous measurement of bacterioplankton production and protozoan bacterivory in estuarine water. Mar Ecol Prog Ser 54: 209–219

    Google Scholar 

  52. Sherr, EB, Rassoulzadegan, F, Sherr, BF (1989) Bacterivory by pelagic choreotrichous ciliates in coastal waters of the NW Mediterranean Sea. Mar Ecol Prog Ser 55: 235–240

    Google Scholar 

  53. Sherr, EB, Sherr, BF (1994) Bacterivory and herbivory: key roles of phagotrophic protists in pelagic food webs. Microb Ecol 28: 223–235

    Article  Google Scholar 

  54. Sherr, EB, Caron, DA, Sherr, BF (1994) Staining of heterotrophic protists for visualisation via epifluorescence microscopy. In: Kemp, PF, Sherr, BF, Sherr, EB, Cole, JJ (Eds.) Handbook of Methods in Aquatic Microbial Ecology. Lewis Publishers, Boca Raton, FL, pp. 213–227

    Google Scholar 

  55. Shumway, SE, Cucci, TL, Newell, RC, Yentsch, CM (1985) Particle selection, ingestion, and absorption in filter-feeding bivalves. J Exp Mar Biol Ecol 91: 77–92

    Article  Google Scholar 

  56. Sime-Ngando, T, Juniper, K, Vézina, A (1992) Ciliated protozoan communities over Cobb Seamount: increase in biomass and spatial patchiness. Mar Ecol Prog Ser 89: 37–51

    Google Scholar 

  57. Sime Ngando, T, Gosselin, M, Roy, S, Chanut, JP (1995) Significance of planktonic ciliated protozoa in the Lower St Lawrence Estuary: comparison with bacterial, phytoplankton and particulate organic carbon. Aquat Microb Ecol 9: 243–258

    Google Scholar 

  58. Stoecker, DK (1998) Conceptual models of mixotrophy in planktonic protists and some ecological and evolutionary implications. Eur J Protistol 34: 281–290

    Google Scholar 

  59. Sournia, A (1986) Atlas du phytoplancton marin, vol. 1. Eds du CNRS, Paris, p 219

  60. Turpin, V, Robert, JM, Goulletquer, P (1999) Limiting nutrients of oyster pond seawaters in the Marennes-Oléron region for Haslea ostrearia: applications to the mass production of the diatom in mesocosm experiments. Aquat Living Resour 12: 335–342

    Article  Google Scholar 

  61. Zanette, Y (1980) Intervention de quelques facteurs dans l'évolution de la biomasse des claires de Marennes-Oléron. Cons Inst Explor Mer C M L 45: 11

    Google Scholar 

  62. Zubkov, MV, Sleigh, MA (1995) Ingestion and assimilation by marine protists fed on bacteria labeled with radioactive thymidine and leucine estimated without separating predator and prey. Microb Ecol 30: 157–170

    Article  Google Scholar 

Download references

Acknowledgments

We thank M. Bréret for technical assistance, A. Pastoureaud for critical review of the manuscript, and Janet Heard Carnot for reviewing the grammatical context. This study was carried out with financial support from the Conseil Général de Charente-Maritime.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Dupuy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dupuy, C., Ryckaert, M., Le Gall, S. et al. Seasonal Variations in Planktonic Community Structure and Production in an Atlantic Coastal Pond: The Importance of Nanoflagellates. Microb Ecol 53, 537–548 (2007). https://doi.org/10.1007/s00248-006-9087-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-006-9087-z

Keywords

Navigation