Skip to main content
Log in

Microbial Communities in the World's Largest Acidic Volcanic Lake, Kawah Ijen in Indonesia, and in the Banyupahit River Originating from It

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

A first study was made on the microbial community composition of the Indonesian crater lake Kawah Ijen (pH < 0.3) and the Banyupahit–Banyuputih river (pH 0.4–3.5) originating from it. Culture-independent, rRNA gene-based denaturing gradient gel electrophoresis was used to profile microbial communities in this natural and ancient, extremely acidic environment. Similarity in community profiles of the different sampling locations was low, indicating heterogeneity in community composition. Archaea were present at all sampling locations; archaeal diversity was low at the most acidic locations and increased at pH >2.6. Bacteria were not detected in the water column of the crater lake, but were found at all locations along the acidic river. Bacterial diversity increased with increasing pH. Eukarya were only present at pH >2.6. Retrieved rRNA gene sequences of Bacteria and Archaea were not closely related to known acidophilic species. It is concluded that tolerance to extreme acidity in this system is developed most extensively among Archaea. The acidity gradient of the Banyupahit–Banyuputih river has a clear effect on microbial community composition and biodiversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Altschul, SF, Gish, W, Miller, W, Myers, EW, Lipman, DJ (1990) Basic local alignment search tool. J Mol Biol 215: 403–410

    Article  CAS  PubMed  Google Scholar 

  2. Amaral Zettler, LA, Gómez, F, Zettler, E, Keenan, BG, Amils, R, Sogin, ML (2002) Eukaryotic diversity in Spain's river of fire. Nature 417: 137

    Article  CAS  PubMed  Google Scholar 

  3. Amann, RI, Stromley, J, Devereux, R, Key, R, Stahl, DA (1992) Molecular and microscopic identification of sulfate-reducing bacteria in multispecies biofilms. Appl Environ Microbiol 58: 614–623

    CAS  PubMed  Google Scholar 

  4. Amann, RI, Ludwig, W, Schleifer, KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59: 143–169

    CAS  PubMed  Google Scholar 

  5. Baker, BJ, Banfield, JF (2003) Microbial communities in acid mine drainage. FEMS Microbiol Ecol 44: 139–152

    Article  CAS  PubMed  Google Scholar 

  6. Burton, NP, Norris, PR (2000) Microbiology of acidic, geothermal springs of Montserrat: environmental rDNA analysis. Extremophiles 4: 315–320

    Article  CAS  PubMed  Google Scholar 

  7. Deely, JM, Sheppard, DS (1996) Whangaehu River, New Zealand: geochemistry of a river discharging from an active crater lake. Appl Geochem 11: 447–460

    CAS  Google Scholar 

  8. Delmelle, P, Bernard, A (1994) Geochemistry, mineralogy, and chemical modelling of the acid crater lake of Kawah Ijen Volcano, Indonesia. Geochim Cosmochim Acta 58: 2445–2460

    Article  CAS  Google Scholar 

  9. Delmelle, P, Bernard, A (2000) Downstream composition changes of acidic volcanic waters discharged into the Banyupahit stream, Ijen caldera, Indonesia. J Volcanol Geotherm Res 97: 55–75

    Article  CAS  Google Scholar 

  10. Díez, B, Pedrós-Alió, C, Marsh, TL, Massana, R (2001) Application of denaturing gel electrophoresis (DGGE) to study the diversity of marine picoeukaryotic assemblages and comparison of DGGE with other molecular techniques. Appl Environ Microbiol 67: 2942–2951

    Article  PubMed  Google Scholar 

  11. Donachie, SP, Christenson, BW, Kunkel, DD, Malahoff, A, Alam, M (2002) Microbial community in acidic hydrothermal waters of volcanically active White Island, New Zealand. Extremophiles 6: 419–425

    Article  CAS  PubMed  Google Scholar 

  12. Eggins, SM, Woodhead, JD, Kinsley, LPJ, Mortimer, GE, Sylvester, P, McCulloch, MT, Hergt, JM, Handler, MR (1997) A simple method for the precise determination of >=40 trace elements in geological samples by ICPMS using enriched isotope internal standardisation. Chem Geol 134: 311–326

    Article  CAS  Google Scholar 

  13. Edwards, KJ, Gihring, TM, Banfield, JF (1999) Seasonal variations in microbial populations and environmental conditions in an extreme acid mine drainage environment. Appl Environ Microbiol: 3627–3632

  14. Felske, A, Wolterink, A, VanLis, R, Akkermans, ADL (1998) Phylogeny of the main bacterial 16SrRNA sequences in Drentse A grassland soils (The Netherlands). Appl Environ Microbiol 64: 871–879

    CAS  PubMed  Google Scholar 

  15. Felsenstein, J (1989) PHYLIP—phylogeny inference package. Cladistics 5: 164–166

    Google Scholar 

  16. Ghiorse, WC, Ehrlich, HL (1992) Microbial Biomineralization of Iron and Manganese. In: Fitzpatrick, RW, Skinner, HCW (Eds.) Iron and Manganese Biomineralization Processes in Modern and Ancient Environments Catena Cremlingen-Destedt, Germany. Catena Supplement 21: 75–99

  17. Johnson, DB (1998) Biodiversity and ecology of acidophilic microorganisms. FEMS Microbiol Ecol 27: 307–317

    Article  CAS  Google Scholar 

  18. Johnson, DB, Rolfe, S, Hallberg, KB, Iversen, E (2001) Isolation and phylogenetic characterization of acidophilic microorganisms indigenous to acidic drainage waters at an abandoned Norwegian copper mine. Environ Microbiol 3: 630–637

    Article  CAS  PubMed  Google Scholar 

  19. Jukes, TH, Cantor, CR (1969) Evolution of protein molecules. In: Munro, HN (Ed.) Mammalian Protein Metabolism, Vol. 3. Academic Press, New York, pp 21–132

    Google Scholar 

  20. Löhr, AJ, Bogaard, TA, Heikens, A, Hendriks, MR, Sumarti, S, Van Bergen, MJ, Van Gestel, CAM, Van Straalen, NM, Vroon, PZ, Widianarko, B (2005) Natural pollution caused by the extremely acid crater lake Kawah Ijen, East Java, Indonesia. Environ Sci Pollut Res. DOI: http://dx.doi.org/10.1065/espr2004.09.118

  21. Löhr, AJ, Sluik, R, Olaveson, MM, Ivorra, N, Van Gestel, CAM, Van Straalen, NM (2006) Macroinvertebrate and algal communities in an extremely acidic river and the Kawah Ijen crater lake (pH < 0.3), Indonesia. Arch Hydrobiol 165: 1–21

    Article  CAS  Google Scholar 

  22. López-Archilla, AI, Marin, I, Amils, R (2001) Microbial community composition and ecology of an acidic aquatic environment: the Tinto river, Spain. Microb Ecol 41: 20–35

    PubMed  Google Scholar 

  23. Muyzer, G, De Waal, EC, Uitterlinden, AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes coding for 16S rRNA. Appl Environ Microbiol 59: 695–700

    CAS  PubMed  Google Scholar 

  24. Nicol, GW, Glover, LA, Prosser, JI (2003) Spatial analysis of archaeal community structure in grassland soil. Appl Environ Microbiol 69: 7420–7429

    Article  CAS  PubMed  Google Scholar 

  25. Øvreås, L, Forney, L, Daae, FL, Torvisk, V (1997) Distribution of bacterioplankton in meromictic Lake Saelenvannet, as determined by denaturing gel electrophoresis of PCR amplified gene fragments coding for 16S rRNA. Appl Environ Microbiol 63: 3367–3373

    PubMed  Google Scholar 

  26. Pringle, CM, Rowe, GL, Triska, FJ, Fernandez, JF, West, J (1993) Landscape linkages between geothermal activity and solute composition and ecological response in surface waters draining the Atlantic slope of Costa Rica. Limnol Oceanogr 38(4): 753–774

    Article  CAS  Google Scholar 

  27. Robbins, EI (2000) Bacteria and Archaea in acidic environments and a key to morphological identification. Hydrobiologia 433: 61–89

    Article  Google Scholar 

  28. Robbins, EI, Rodgers, TM, Alpers, CN, Nordstrom, DK (2000) Ecogeochemistry of the subsurface food web at pH 0–2.5 in Iron Mountain, California, USA. Hydrobiologia 433: 15–23

    Article  CAS  Google Scholar 

  29. Röling, WFM, Head, IM (2005) Prokaryotic systematics: PCR and sequence analysis of amplified 16S rRNA genes. In: Osborn, AM, Smith, CJ (Eds.) Molecular MIcrobial Ecology, Taylor and Francis Group, Abingdon, UK, pp 25–63

  30. Röling, WFM, van Breukelen, BM, Braster, M, Goeltom, MT, Groen, J, Verseveld, HW (2000) Analysis of microbial communities in a landfill leachate polluted aquifer using a new method for anaerobic physiological profiling and 16S rDNA based fingerprinting. Microb Ecol 40: 177–188

    PubMed  Google Scholar 

  31. Rowe Jr, GL, Brantley, SL, Fernandez, M, Fernandez, JF, Barquero, J, Borgia, A (1992) Fluid volcano interactions at an active stratovolcano: the crater lake system of Poas volcano, Costa Rica. J Volcanol Geotherm Res 49: 23–51

    Article  CAS  Google Scholar 

  32. Saitou, N, Nei, M (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425

    CAS  PubMed  Google Scholar 

  33. Takai, K, Horikoshi, K (1999) Genetic diversity of Archaea in deep-sea hydrothermal vent environments. Genetics 152: 1285–1297

    CAS  PubMed  Google Scholar 

  34. Takano, B, Ohsawa, S, Glover, RB (1994) Surveillance of Ruapehu crater lake, New Zealand, by aqueous polythionates. J Volcanol Geotherm Res 60(1): 29–57

    Article  CAS  Google Scholar 

  35. Takano, B, Koshida, M, Fujiwara, Y, Sugimori, K, Takayanagi, S (1997) Influence of sulfur-oxidizing bacteria on the budget of sulfate in Yuguma crater lake, Kusatsu–Shirane volcano, Japan. Biogeochem 38: 227–253

    Article  CAS  Google Scholar 

  36. Van de Peer, Y, De Wachter, R (1994) Treecon for Windows—A Software Package for the Construction and Drawing of Evolutionary Trees for the Microsoft Windows Environment. Comput Appl Biosci 10: 569–570

    PubMed  Google Scholar 

  37. Wendt-Pothoff, K, Koschorreck, M (2002) Functional groups and activities of bacteria in a highly acidic volcanic mountain stream and lake in Patagonia, Argentina. Microb Ecol 43: 92–106

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Bapak Kelik Lrianto for assistance during the fieldwork and Hetty Schäfer, Nel Slimmen, and Bas van der Wagt for their help with the ICP analyses. The research permits were granted by Lembaga Ilmu Pengetahuan Indonesia (LIPI), Jakarta. This work was supported by The Netherlands Foundation for the Advancement of Tropical Research (WOTRO), residing under the Netherlands Organization for Scientific Research (NWO), project number WAE 84-465.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ansje J. Löhr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Löhr, A.J., Laverman, A.M., Braster, M. et al. Microbial Communities in the World's Largest Acidic Volcanic Lake, Kawah Ijen in Indonesia, and in the Banyupahit River Originating from It. Microb Ecol 52, 609–618 (2006). https://doi.org/10.1007/s00248-006-9068-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-006-9068-2

Keywords

Navigation