Skip to main content

Advertisement

Log in

Effect of Agricultural Management Regime on Burkholderia Community Structure in Soil

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The main objective of this study was to determine the Burkholderia community structure associated with areas under different agricultural management and to evaluate to which extent this community structure is affected by changes in agricultural management. Two fields with distinct soil history (arable land and permanent grassland) were exposed to three agricultural management regimes (crop rotation, maize monoculture, and grassland). By using a culture-independent approach, based on a Burkholderia-specific polymerase chain reaction–denaturing gradient gel electrophoresis system, it was possible to observe the conversion of Burkholderia communities typical for permanent grassland to those of arable land after four consecutive years. However, the time needed to achieve the reverse transition, i.e., converting the Burkholderia community associated with arable land to that of grassland, was beyond the duration of the field experiment. In addition, by applying principal response curves, the direction and extent of the conversion from grassland to arable land (maize monoculture and to crop rotation) were determined. Hence, the results suggested that agricultural practices, such as fertilization and tillage, were more effective in changing the Burkholderia community structure than agricultural management regime. To determine the effect of agricultural management on the Burkholderia population with biocontrol abilities, the culturable fraction of the Burkholderia community was assessed. The areas under permanent grassland and grassland converted to maize monoculture had the highest percentages of Burkholderia strains with antagonistic activity against Rhizoctonia solani AG-3, mainly Burkholderia pyrrocinia and Burkholderia sp. LMG 22929. The isolation frequency of antagonistic isolates from arable land was extremely low. Our results indicate that (changes in) agricultural management, mainly crop rotation, affect the frequency of isolation of antagonistic Burkholderia strains and that grassland represents a reservoir of Burkholderia species with great potential for agricultural applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Ait Barka, E, Gognies, S, Nowak, J, Audran, J-C, Belarbi, A (2002) Inhibitory effect of endophyte bacteria on Botrytis cinerea and its influence to promote the grapevine growth. Biol Control 24: 135–142

    Article  Google Scholar 

  2. Altschul, SF, Madden, TL, Schaffer, AA, Zhang, JH, Zhang, Z, Miller, W, Lipman, DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402

    Article  PubMed  CAS  Google Scholar 

  3. Buckley, DH, Schmidt, TM (2003) Diversity and dynamics of microbial communities in soils from agro-ecosystems. Environ Microbiol 5: 441–452

    Article  PubMed  Google Scholar 

  4. Caballero-Mellado, J, Martinez-Aguilar, L, Paredes-Valdez, G, Estrada-De los Santos, P (2004) Burkholderia unamae sp. nov., an N2-fixing rhizospheric and endophytic species. Int J Syst Evol Microbiol 54: 1165–1172

    Article  PubMed  CAS  Google Scholar 

  5. Cain, CC, Henry, AT, Waldo, RH, Casida, LJ, Falkinham, JO (2000) Identification and characteristics of a novel Burkholderia strain with broad-spectrum antimicrobial activity. Appl Environ Microbiol 66: 4139–4141

    Article  PubMed  CAS  Google Scholar 

  6. Clegg, CD, Lovell, RDL, Hobbs, PJ (2003) The impact of grassland management regime on the community structure of selected bacterial groups in soils. FEMS Microbiol Ecol 43: 263–270

    Article  CAS  PubMed  Google Scholar 

  7. Coenye, T, Holmes, B, Kersters, K, Govan, JRW, Vandamme, P (1999) Burkholderia cocovenenans (van Damme et al. 1960) Gillis et al., 1995 and Burkholderia vandii Urakami et al. 1994 are junior synonyms of Burkholderia gladioli (Severini 1913) Yabuuchi et al. 1993 and Burkholderia plantarii (Azegami et al. 1987) Urakami et al. 1994, respectively. Int J Syst Bacteriol 49: 37–42

    Article  PubMed  Google Scholar 

  8. Coenye, T, Laevens, S, Willems, A, Ohlen, M, Hannant, W, Govan, JRW, Gillis, M, Falsen, E, Vandamme, P (2001) Burkholderia fungorum sp. nov., and Burkholderia caledonica sp. nov., two new species isolated from the environment, animals and human clinical samples. Int J Syst Evol Microbiol 51: 1099–1107

    PubMed  CAS  Google Scholar 

  9. Coenye, T, Vandamme, P (2003) Diversity and significance of Burkholderia species occupying diverse ecological niches. Environ Microbiol 5: 719–729

    Article  PubMed  CAS  Google Scholar 

  10. El Banna, N, Winkelmann, G (1998) Pyrrolnitrin from Burkholderia cepacia: antibiotic activity against fungi and novel activities against streptomycetes. J Appl Microbiol 85: 69–78

    Article  PubMed  Google Scholar 

  11. Estrada-De los Santos, P, Bustillos-Cristales, R, Caballero-Mellado, J (2001) Burkholderia, a genus rich in plant-associated nitrogen fixers with wide environmental and geographic distribution. Appl Environ Microbiol 67: 2790–2798

    Article  PubMed  CAS  Google Scholar 

  12. Garbeva, P, van Veen, JA, van Elsas, JD (2004) Assessment of the diversity, and antagonism towards Rhizoctonia solani AG3, of Pseudomonas species in soil from different agricultural regimes. FEMS Microbiol Ecol 47: 51–64

    Article  CAS  PubMed  Google Scholar 

  13. Garbeva, P, Voesenek, K, van Elsas, JD (2004) Quantitative detection and diversity of the pyrrolnitrin biosynthetic locus in soil under different treatments. Soil Biol Biochem 36: 1453–1463

    Article  CAS  Google Scholar 

  14. Gee, JE, Sacchi, CT, Glass, MB, De, BK, Weyant, RS, Levett, PN, Whitney, AM, Hoffmaster, AR, Popovic, T (2003) use of 16S rRNA gene sequencing for rapid identification and differentiation of Burkholderia pseudomallei and B. mallei. J Clin Microbiol 41: 4647–4654

    Article  PubMed  CAS  Google Scholar 

  15. Goris, J, Dejonghe, W, Falsen, E, De Clerck, E, Geeraerts, B, Willems, A, Top, EM, Vandamme, P, De Vos, P (2002) Diversity of transconjugants that acquired plasmid pJP4 or pEMT1 after inoculation of a donor strain in the A- and B-horizon of an agricultural soil and description of Burkholderia hospita sp. nov. and Burkholderia terricola sp. nov. Syst Appl Microbiol 25: 340–352

    Article  PubMed  CAS  Google Scholar 

  16. Grayston, SJ, Campbell, CD, Bardgett, RD, Mawdsley, JL, Clegg, CD, Ritz, K, Griffiths, BS, Rodwell, JS, Edwards, SJ, Davies, WJ (2004) Assessing shifts in microbial community structure across a range of grasslands of differing management intensity using CLPP, PLFA and community DNA techniques. Appl Soil Ecol 25: 63–84

    Article  Google Scholar 

  17. Hagedorn, C, Gould, WD, Bardinelli, TR, Gustavson, DR (1987) A selective medium for enumeration and recovery of Pseudomonas cepacia biotypes from soil. Appl Environ Microbiol 53: 2265–2268

    PubMed  CAS  Google Scholar 

  18. Hebbar, KP, Martel, MH, Heulin, T (1998) Suppression of pre- and post-emergence damping-off in corn by Burkholderia cepacia. Eur J Plant Pathol 104: 29–36

    Article  Google Scholar 

  19. Heungens, K, Parke, JL (2000) Zoospore homing and infection events: effects of the biocontrol bacterium Burkholderia cepacia AMMDR1 on two oomycete pathogens of pea (Pisum sativum L.). Appl Environ Microbiol 66: 5192–5200

    Article  PubMed  CAS  Google Scholar 

  20. Heydari, A, Misaghi, IJ (1998) Biocontrol activity of Burkholderia cepacia against Rhizoctonia solani in herbicide-treated soils. Plant Soil 202: 109–116

    Article  CAS  Google Scholar 

  21. Hill, DS, Stein, JI, Torkewitz, NR, Morse, AM, Howell, CR, Pachlatko, JP, Becker, JO, Ligon, JM (1994) Cloning of genes involved in the synthesis of pyrrolnitrin from Pseudomonas fluorescens and the role of pyrrolnitrin synthesis in the biological control of plant disease. Appl Environ Microbiol 60: 78–85

    PubMed  CAS  Google Scholar 

  22. Johnson, MJ, Lee, KY, Scow, KM (2003) DNA fingerprinting reveals links among agricultural crops, soil properties, and the composition of soil microbial communities. Geoderma 114: 279–303

    Article  Google Scholar 

  23. Jung, WJ, An, KN, Jin, YL, Park, RD, Lim, KT, Kim, KY, Kim, TH (2003) Biological control of damping-off caused by Rhizoctonia solani using chitinase-producing Paenibacillus illinoisensis KJA-424. Soil Biol Biochem 35: 1261–1264

    Article  CAS  Google Scholar 

  24. Kandeler, E, Marschner, P, Tscherko, D, Gahoonia, TS, Nielsen, NE (2002) Microbial community composition and functional diversity in the rhizosphere of maize. Plant Soil 238: 301–312

    Article  CAS  Google Scholar 

  25. Kang, YW, Carlson, R, Tharpe, W, Schell, MA (1998) Characterization of genes involved in biosynthesis of a novel antibiotic from Burkholderia cepacia BC11 and their role in biological control of Rhizoctonia solani. Appl Environ Microbiol 64: 3939–3947

    PubMed  CAS  Google Scholar 

  26. Kong, H, Shimosaka, M, Ando, Y, Nishiyama, K, Fujii, T, Miyashita, K (2001) Species-specific distribution of a modular family 19 chitinase gene in Burkholderia gladioli. FEMS Microbiol Ecol 37: 135–141

    Article  CAS  Google Scholar 

  27. Lepš, J, Šmilauer, P (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, Cambridge

    Google Scholar 

  28. Li, W, Roberts, DP, Dery, PD, Meyer, SLF, Lohrke, S, Lumsden, RD, Hebbar, KP (2002) Broad spectrum antibiotic activity and disease suppression by the potential biocontrol agent Burkholderia ambifaria BC-F. Crop Prot 21: 129–135

    Article  Google Scholar 

  29. Mahenthiralingam, E, Bischof, J, Byrne, SK, Radomski, C, Davies, JE, Av-Gay, Y, Vandamme, P (2000) DNA-based diagnostic approaches for identification of Burkholderia cepacia complex, Burkholderia vietnamiensis, Burkholderia multivorans, Burkholderia stabilis, and Burkholderia cepacia genomovars I and III. J Clin Microbiol 38: 3165–3173

    PubMed  CAS  Google Scholar 

  30. Master, ER, Lai, VWM, Kuipers, B, Cullen, WR, Mohn, WW (2002) Sequential anaerobic–aerobic treatment of soil contaminated with weathered aroclor 1260. Environ Sci Technol 36: 100–103

    Article  PubMed  CAS  Google Scholar 

  31. Mazzola, M (1999) Transformation of soil microbial community structure and Rhizoctonia-suppressive potential in response to apple roots. Phytopathology 89: 920–927

    Article  CAS  PubMed  Google Scholar 

  32. McCaig, AE, Glover, LA, Prosser, JI (2001) Numerical analysis of grassland bacterial community structure under different land management regimens by using 16S ribosomal DNA sequence data and denaturing gradient gel electrophoresis banding patterns. Appl Environ Microbiol 67: 4554–4559

    Article  PubMed  CAS  Google Scholar 

  33. Miller, SCM, LiPuma, JJ, Parke, JL (2002) Culture-based and non-growth-dependent detection of the Burkholderia cepacia complex in soil environments. Appl Environ Microbiol 68: 3750–3758

    Article  PubMed  CAS  Google Scholar 

  34. Morris, CE, Bardin, M, Berge, O, Frey-Klett, P, Fromin, N, Girardin, H, Guinebretiere, M-H, Lebaron, P, Thiery, JM, Troussellier, M (2002) Microbial biodiversity: approaches to experimental design and hypothesis testing in primary scientific literature from 1975 to 1999. Microbiol Mol Biol Rev 66: 592–616

    Article  PubMed  Google Scholar 

  35. Parke, JL, Gurian-Sherman, D (2001) Diversity of the Burkholderia cepacia complex and implications for risk assessment of biological control strains. Annu Rev Phytopathol 39: 225–258

    Article  PubMed  CAS  Google Scholar 

  36. Raaijmakers, JM, Weller, DM (1998) Natural plant protection by 2,4-diacetylphloroglucinol-producing Pseudomonas spp. in take-all decline soils. Mol Plant Microb Interact 11: 144–152

    Article  CAS  Google Scholar 

  37. Reis, VM, Estrada-De los Santos, P, Tenorio-Salgado, S, Vogel, J, Stoffels, M, Guyon, S, Mavingui, P, Baldani, VLD, Schmid, M, Baldani, JI, Balandreau, J, Hartmann, A, Caballero-Mellado, J (2004) Burkholderia tropica sp. nov., a novel nitrogen-fixing, plant-associated bacterium. Int J Syst Evol Microbiol 54: 2155–2162

    Article  PubMed  CAS  Google Scholar 

  38. Richardson, J, Stead, DE, Elphinstone, JG, Coutts, RHA (2002) Diversity of Burkholderia isolates from woodland rhizosphere environments. J Appl Microbiol 93: 616–630

    Article  PubMed  CAS  Google Scholar 

  39. Salles, JF, De Souza, FA, van Elsas, JD (2002) Molecular method to assess the diversity of Burkholderia species in environmental samples. Appl Environ Microbiol 68: 1595–1603

    Article  PubMed  CAS  Google Scholar 

  40. Salles, JF, Samyn, E, Vandamme, P, van Veen, JA, van Elsas, JD (2004) The diversity of Burkholderia species in soil is driven by changes in agricultural management. in preparation

  41. Salles, JF, van Veen, JA, van Elsas, JD (2004) Changes in agricultural management drive the diversity of Burkholderia species isolated from soil on PCAT medium. Soil Boil Biochem 38: 661–673

    Article  CAS  Google Scholar 

  42. Schoenborn, L, Yates, PS, Grinton, BE, Hugenholtz, P, Janssen, PH (2004) Liquid serial dilution is inferior to solid media for isolation of cultures representative of the phylum-level diversity of soil bacteria. Appl Environ Microbiol 70: 4363–4366

    Article  PubMed  CAS  Google Scholar 

  43. Sessitsch, A, Coenye, T, Salles, JF, van Elsas, JD, Sturz, AV, Vandamme, P, Ait Barka, E, Faure, D, Reiter, B, Glick, BR, Wang-Pruski, G, Nowak, J (2005) Burkholderia phytofirmans sp. nov., a novel plant-associated bacterium with plant beneficial properties. Int J Syst Evol Microbiol 55: 1187–1192

    Article  PubMed  CAS  Google Scholar 

  44. Steenwerth, KL, Jackson, LE, Calderon, FJ, Stromberg, MR, Scow, KM (2002) Soil microbial community composition and land use history in cultivated and grassland ecosystems of coastal California. Soil Biol Biochem 34: 1599–1611

    Article  CAS  Google Scholar 

  45. Tabacchioni, S, Chiarini, L, Bevivino, A, Cantale, C, Dalmastri, C (2000) Bias caused by using different isolation media for assessing the genetic diversity of a natural microbial population. Microb Ecol 40: 169–176

    PubMed  CAS  Google Scholar 

  46. Trân Van, V, Berge, O, Balandreau, J, Ke, SN, Heulin, T (1996) Isolation and nitrogenase activity of Burkholderia vietnamiensis, a nitrogen-fixing bacterium associated with rice (Oryza sativa L.) on a sulphate acid soil of Vietnam. Agronomie 16: 479–491

    Article  Google Scholar 

  47. Trân Van, V, Berge, O, Ke, SN, Balandreau, J, Heulin, T (2000) Repeated beneficial effects of rice inoculation with a strain of Burkholderia vietnamiensis on early and late yield components in low fertility sulphate acid soils of Vietnam. Plant Soil 218: 273–284

    Article  Google Scholar 

  48. van Elsas, JD, Garbeva, P, Salles, JF (2002) Effects of agronomical measures on the microbial diversity of soils as related to the suppression of soil-borne plant pathogens. Biodegradation 13: 29–40

    Article  PubMed  Google Scholar 

  49. Vandamme, P, Goris, J, Chen, WM, Vos, Pd, Willems, A (2002) Burkholderia tuberum sp. nov. and Burkholderia phymatum sp. nov., nodulate the roots of tropical legumes. Syst Appl Microbiol 25: 507–512

    Article  PubMed  Google Scholar 

  50. Vandamme, P, Holmes, B, Vancanneyt, M, Coenye, T, Hoste, B, Coopman, R, Revets, H, Lauwers, S, Gillis, M, Kersters, K, Govan, JRW (1997) Occurrence of multiple genomovars of Burkholderia cepacia in cystic fibrosis patients and proposal of Burkholderia multivorans sp. nov. Int J Syst Bacteriol 47: 1188–1200

    PubMed  CAS  Google Scholar 

  51. Viallard, V, Poirier, I, Cournoyer, B, Haurat, J, Wiebkin, S, Ophel Keller, K, Balandreau, J (1998) Burkholderia graminis sp. nov., a rhizospheric Burkholderia species, and reassessment of [Pseudomonas] phenazinium, [Pseudomonas] pyrrocinia and [Pseudomonas] glathei as Burkholderia. Int J Syst Bacteriol 48: 549–563

    PubMed  CAS  Google Scholar 

  52. Wilson, MS, Herrick, JB, Jeon, CO, Hinman, DE, Madsen, EL (2003) Horizontal transfer of phnAc dioxygenase genes within one of two phenotypically and genotypically distinctive naphthalene-degrading guilds from adjacent soil environments. Appl Environ Microbiol 69: 2172–2181

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the anonymous reviewers of this manuscript for their helpful comments. This work was supported by the National Council for Scientific and Technological Development (CNPq, Brazil) project 20.0849/98-0, by the Ministry of Agriculture, Nature and Fisheries, the Netherlands, grant DKW352, and by EU-POTATOCONTROL and EU-METACONTROL collaborative grants (to J.D.V.E.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. F. Salles.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salles, J.F., van Elsas, J.D. & van Veen, J.A. Effect of Agricultural Management Regime on Burkholderia Community Structure in Soil. Microb Ecol 52, 267–279 (2006). https://doi.org/10.1007/s00248-006-9048-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-006-9048-6

Keywords

Navigation