Skip to main content
Log in

Resource-Limited Heterotrophic Prokaryote Production and Its Potential Environmental Impact Associated with Mn Nodule Exploitation in the Northeast Equatorial Pacific

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Shipboard enrichment incubation experiments were performed to elucidate the limiting resources for heterotrophic prokaryotic production and to discuss the potential impact of bottom water and sediment discharges in relation to manganese (Mn) nodule exploitation on the heterotrophic prokaryotes in the oligotrophic northeast equatorial Pacific. Compared to an unamended control, the production of heterotrophic prokaryotes increased 25-fold in water samples supplemented with amino acids (i.e., organic carbon plus nitrogen), whereas the production increased five and two times, respectively, in samples supplemented with either glucose or ammonium alone. These results indicate that heterotrophic prokaryote production in the northeast equatorial Pacific was co-limited by the availability of dissolved organic carbon and inorganic nitrogen. In samples from the nutrient-depleted surface mixed layer (10-m depth), the addition of a slurry of bottom water and sediment doubled heterotrophic prokaryote production compared to an unamended control, whereas sonicating the slurry prior to addition quadrupled the production rate. However, little difference was observed between an unamended control and slurry-amended samples in the subsurface chlorophyll a (Chl a) maximum (SCM) layer. Thus, the impact of slurry discharge is more significant at the nutrient-depleted surface mixed layer than at the high-nutrient SCM layer. The greatly enhanced prokaryote production resulting from the addition of sonicated slurry further suggests that dissociated organic carbon may directly stimulate heterotrophic prokaryote production in the surface mixed layer. Overall, the results suggest that the surface discharge of bottom water and sediments during manganese nodule exploitation could have a significant environmental impact on the production of heterotrophic prokaryotes that are currently resource limited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Amann, H (1992) The environmental impact of deep sea mining, Section III. Thetis technologie GMBH, Hannover

  2. Amsbaugh, JK, Van der Voort, JL (1982) The ocean mining industry: a benefit for every risk? Oceanus 25(3): 22–27

    Google Scholar 

  3. Anderson, JJ (1979) Nutrient chemistry in the tropical north Pacific DOMES sites A, B, and C. In: Bischoff JL, Piper DZ (Eds.) Marine Geology and Oceanography of the Pacific Manganese Nodule Province. Plenum Press. New York, pp 113–161

    Google Scholar 

  4. Andrews, JE, Friedrich, GHW (1979) Distribution patterns of manganese nodule deposits in the northeast equatorial Pacific. Mar Min 2: 1–43

    CAS  Google Scholar 

  5. Azam, F, Fenchel, T, Field, JG, Gray, JS, Meyer-Reil, LA, Thingstad, F (1983) The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 10: 257–263

    Article  Google Scholar 

  6. Bjørnsen, PK (1988) Phytoplankton exudation of organic matter: Why do healthy cells do it? Limnol Oceanogr 33: 151–154

    Google Scholar 

  7. Broecker, WS, Peng, T-H (1982) Tracers in the sea. Lamont–Doherty Geological Observatory. New York, p 690

    Google Scholar 

  8. Caron, DA, Dam, HG, Kremer, P, Lessard, EJ, Madin, LP, Malone, TC, Napp, JM, Peele, ER, Roman, MR, Youngbluth, MJ (1995) The contribution of microorganisms to particulate carbon and nitrogen in surface waters of the Sargasso Sea near Bermuda. Deep-Sea Res 42: 943–972

    Article  CAS  Google Scholar 

  9. Caron, DA, Lim, EL, Sanders, RW, Dennett, M, Berninger, U-G (2000) Responses of bacterioplankton and phytoplankton to organic carbon and inorganic nutrient additions in contrasting oceanic ecosystems. Aquat Microb Ecol 22: 175–184

    Article  Google Scholar 

  10. Chan, AT, Anderson, GC (1981) Environmental investigation of the effects of deep-sea mining on marine phytoplankton and primary productivity in the tropical eastern north Pacific Ocean. Mar Min 3: 121–149

    CAS  Google Scholar 

  11. Cherrier, J, Bauer, JE, Druffel, ER (1996) Utilization and turnover of labile dissolved organic matter by bacterial heterotrophs in eastern north Pacific surface waters. Mar Ecol Prog Ser 139: 267–279

    Article  Google Scholar 

  12. Cho, BC, Azam, F (1990) Biogeochemical significance of bacterial biomass in the ocean’s euphonic zone. Mar Ecol Prog Ser 63: 253–259

    Article  CAS  Google Scholar 

  13. Church, MJ, Hutchins, DA, Ducklow, HW (2000) Limitation of bacterial growth by dissolved organic matter and iron in the Southern Ocean. Appl Environ Microbiol 66: 455–466

    Article  PubMed  CAS  Google Scholar 

  14. Cole, JJ, Pace, ML, Findlay, S (1988) Bacterial production in fresh and saltwater ecosystems: a cross-system overview. Mar Ecol Prog Ser 43: 1–10

    Article  Google Scholar 

  15. Cotner, JB, Ammerman, JW, Peele, ER, Bentzen, E (1997) Phosphorus-limited bacterioplankton growth in the Sargasso Sea. Aquat Microb Ecol 13: 141–149

    Article  Google Scholar 

  16. Curtis, C (1982) The environmental aspects of deep ocean mining. Oceanus 25: 31–36

    Google Scholar 

  17. del Giorgio, PA, Cole, JJ, Cimbleris, A (1997) Respiration rates in bacteria exceed phytoplankton production in unproductive aquatic systems. Nature 385: 148–151

    Article  Google Scholar 

  18. del Giorgio, PA, Cole, JJ (2000) Bacterial energetics and growth efficiency. In: Kirchman DL (Ed.) Microbial Ecology of the Oceans. Wiley-Liss. New York, pp 289–325

    Google Scholar 

  19. Ducklow, HW, Fasham, MJR (1992) Bacteria in the green house: Modeling the role of oceanic plankton in the global carbon cycle. In: Mitchell R (Ed.) Environmental Microbiology. Wiley-Liss. New York, pp 1–31

    Google Scholar 

  20. Ducklow, HW, Carlson, CA (1992) Oceanic bacterial production. Adv Microb Ecol 12: 113–181

    Google Scholar 

  21. Earney, FCF (1990) Marine Mineral Resources. Routledge, London

    Google Scholar 

  22. Emery, KO, Broadus, JM (1989) Overview: Marine mineral reserves and resources—1988. Mar Min 8: 109–121

    Google Scholar 

  23. Emery, KO, Skinner, BJ (1977) Mineral deposits of the deep-ocean floor. Mar Min 1: 1–71

    CAS  Google Scholar 

  24. Eppley, RW, Swift, E, Redalje, DG, Landry, MR, Haas, LW (1988) Subsurface chlorophyll maximum in August–September 1985 in the CLIMAX area of the North Pacific. Mar Ecol Prog Ser 42: 289–301

    Article  Google Scholar 

  25. Fryxell, GA, Taguchi, S, El-Sayed, SZ (1979) Vertical distribution of diverse phytoplankton communities in the central Pacific. In: Bischoff JL, Piper DZ (Eds.) Marine Geology and Oceanography of the Pacific Manganese Nodule Province. Plenum Press, New York, pp 203–239

    Google Scholar 

  26. Fuhrman, JA, Azam, F (1980) Bacterioplankton secondary production estimates for coastal waters of British Columbia, Antarctica, and California. Appl Environ Microbiol 39: 1085–1095

    PubMed  CAS  Google Scholar 

  27. Fuhrman, JA, Azam, F (1982) Thymidine incorporation as a measure of heterotrophic bacterioplankton production in marine surface waters: evaluation and field results. Mar Biol 66: 109–122

    Article  Google Scholar 

  28. Fuhrman, JA, Ducklow, HW, Kirchman, DL, Hudak, J, McManus, GB, Kramer, J (1986) Does adenine incorporation into nucleic acids measure total microbial production? Limnol Oceanogr 31: 627–636

    CAS  Google Scholar 

  29. Fuhrman, JA, Sleeter, TD, Carlson, CA, Proctor, LM (1989) Dominance of bacterial biomass in the Sargasso Sea and its ecological implications. Mar Ecol Prog Ser 45: 271–278

    Article  Google Scholar 

  30. Fuhrman, JA (2000) Impact of viruses on bacterial processes. In: Kirchman DL (Ed.) Microbial Ecology of the Oceans. Wiley-Liss. New York, pp 327–350

    Google Scholar 

  31. Gasol, JM, del Giorgio, PA, Duarte, CM (1997) Biomass distribution in marine planktonic communities. Limnol Oceanogr 42: 1353–1363

    Article  CAS  Google Scholar 

  32. Hirota, J (1981) Potential effects of deep-sea minerals mining on macrozooplankton in the north equatorial Pacific. Mar Min 3: 19–57

    CAS  Google Scholar 

  33. Huntsman, SA, Sunda, WG (1980) The role of trace metals in regulating phytoplankton growth with emphasis on Fe, Mn and Cu. In: Morris I (Ed.) The Physiological Ecology of Phytoplankton. Blackwell Scientific Publications. Oxford, pp 285–328

    Google Scholar 

  34. Hyun, J-H, Yang, EJ (2003) Freezing seawater for the long-term storage of bacterial cells for microscopic enumeration. J Microbiol 41: 262–265

    Google Scholar 

  35. Hyun, J-H, Yang, EJ (2005) Meso-scale spatial variation in the bacterial abundance and production associated with surface water convergence and divergence in the northeast equatorial Pacific. Aquat Microb Ecol 41: 1–13

    Article  Google Scholar 

  36. Hyun, J-H, Kim, K-H, Jung, H-S, Lee, K-Y (1998) Potential environmental impact by deep-seabed manganese nodule mining on the Synechococcus (cyanobacteria) in the northeast equatorial Pacific: effect of bottom water–sediment slurry. Mar Georesour Geotechnol 16: 133–143

    Article  CAS  Google Scholar 

  37. Jung, HS, Lee, CB, Jeong, KS, Kang, JK (1998) Geochemical and mineralogical characteristics in two-color core sediments from the Korea deep ocean study (KODOS) area, northeast equatorial Pacific. Mar Geol 144: 295–309

    Article  CAS  Google Scholar 

  38. Karl, DM (1999) A sea of change: biogeochemical variability in the north Pacific subtropical gyre. Ecosystems 2: 181–214

    Article  CAS  Google Scholar 

  39. Keil, RG, Montiucon, DB, Prahl, FG, Hedges, JI (1994) Sorptive preservation of labile organic matter in marine sediments. Nature 370: 549–552

    Article  Google Scholar 

  40. Kirchman, DL (1990) Limitation of bacterial growth by dissolved organic matter in the subarctic Pacific. Mar Ecol Prog Ser 62:47–54

    Article  CAS  Google Scholar 

  41. Kirchman, DL, Rich, JH (1997) Regulation of bacterial growth rates by dissolved organic carbon and temperature in the equatorial Pacific Ocean. Microb Ecol 33: 11–20

    Article  PubMed  Google Scholar 

  42. Kirchman, DL, Meon, B, Cottrel, MT, Hutchins, D, Weeks, D, Bruland, KW (2000) Carbon versus iron limitation of bacterial growth in the California upwelling regime. Limnol Oceanogr 45: 1681–1688

    Article  Google Scholar 

  43. Klinkhammer, G, Heggie, DT, Graham, DW (1982) Metal diagenesis in oxic marine sediments. Earth Planet Sci Lett 61: 211–219

    Article  CAS  Google Scholar 

  44. Krom, MD, Kress, N, Brenner, S, Gordon, LI (1991) Phosphorus limitation of primary productivity in the eastern Mediterranean Sea. Limnol Oceanogr 36: 424–432

    Article  CAS  Google Scholar 

  45. Kuparinen, J, Heinenen, A (1993) Inorganic nutrient and carbon controlled bacterioplankton growth in the Baltic Sea. Estuar Coast Shelf Sci 37: 271–285

    Article  CAS  Google Scholar 

  46. Lavelle, JW, Ozturgut, E (1981) Q1 Dispersion of deep sea mining particulates and their effect on light in ocean surface layers. Mar Min 3: 185–212

    Google Scholar 

  47. Landry, MR, Kirshtein, J, Constantinou, J (1996) Abundances and distribution of picoplankton populations in the central equatorial Pacific from 12-N to 12-S, 140-W. Deep-Sea Res II 43: 871–890

    Article  Google Scholar 

  48. Landry, MR, Kirchman, DL (2002) Microbial community structure and viability in the tropical Pacific. Deep-Sea Res II 49: 2669–2693

    Article  Google Scholar 

  49. Lee, JG, Roberts, SB, Morel, FMM (1995) Cadmium: A nutrient for marine diatom Thalassiosira weissfloggi. Limnol Oceanogr 40: 1056 –1063

    Article  CAS  Google Scholar 

  50. Levitus, S, Conkright, ME, Reid, JL, Najjar, RG, Mantyla, A (1993) Distribution of nitrate, phosphate and silicate in the world oceans. Prog Oceanogr 31: 245–273

    Article  Google Scholar 

  51. Li, WKW, Dickie, PM, Irwin, BD, Wood, AM (1992) Biomass of bacteria, cyanobacteria, prochlorophytes and photosynthetic eukaryotes in the Sargasso Sea. Deep-Sea Res 39: 501–519

    Article  Google Scholar 

  52. Martin, JH, Knauer, GA, Karl, DM, Broenkow, WW (1987) VERTEX: Carbon cycling in the northeast Pacific. Deep-Sea Res 34: 267–285

    Article  CAS  Google Scholar 

  53. Martin, JH, Gordon, RM (1988) Northeast Pacific iron distributions in relation to phytoplankton productivity. Deep-Sea Res 35: 177–196

    Article  CAS  Google Scholar 

  54. Mayer, LM (1994) Relationships between mineral surfaces and organic carbon concentrations in soils and sediments. Chem Geol 114: 347–363

    Article  CAS  Google Scholar 

  55. Mu¨ller, PJ (1977) C/N ratios in Pacific deep-sea sediments: Effects of inorganic ammonium and organic nitrogen compounds sorbed by clays. Geochim Cosmochim Acta 41: 765–776

    Article  Google Scholar 

  56. Münster, U, Chróst, RJ (1995) Origin, composition, and microbial utilization of dissolved organic matter. In: Overbeck J, Chróst RJ (Eds.) Aquatic Microbial Ecology: Biochemical and Molecular Approaches. Springer-Verlag. New York, pp 8–46

    Google Scholar 

  57. Murray, JW, Johnson, E, Garside, C (1995) A U. S. JGOFS Process study in the equatorial Pacific (EqPac): Introduction. Deep-Sea Res II 42: 275–293

    Article  CAS  Google Scholar 

  58. Nagata, T (2000) Production mechanisms of dissolved organic matter. In: Kirchman DL (Eds.) Microbial Ecology of the Oceans. Wiley-Liss. New York, pp 121–152

    Google Scholar 

  59. Nagata, T, Kirchman, DL (1996) Bacterial degradation of protein absorbed to model submicron particles in seawater. Mar Ecol Prog Ser 132: 241–248

    Article  CAS  Google Scholar 

  60. Nagata, T, Fukuda, R, Koike, I, Kogure, K, Kirchman, DL (1998) Degradation by bacteria of membrane and soluble protein in seawater. Aquat Microb Ecol 14: 29–37

    Article  Google Scholar 

  61. Padan, JW (1990) Commercial recovery of deep seabed manganese nodules: Twenty years of accomplishments. Mar Min 9: 87–103

    Google Scholar 

  62. Pakulski, JD, Coffin, RB, Kelley, CA, Holder, SL, Aas, P, Lyons, WH, Jeffrey, WH (1996) Iron stimulation of Antarctic bacteria. Nature 383: 133–134

    Article  CAS  Google Scholar 

  63. Parsons, TR, Maita, Y, Lalli, CM (1984) A Manual of Chemical and Biological Methods for Seawater Analysis. Pergamon Press. Oxford

    Google Scholar 

  64. Porter, KG, Feig, YS (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25: 943–948

    Google Scholar 

  65. Sherr, EB, Sherr, BF, Paffenhofer, GA (1986) Phagotrophic protozoa as food for metazoans: A Bmissing^ trophic link in marine pelagic food webs? Mar Microb Food Webs 1: 61–80

    Google Scholar 

  66. Sieracki, ME, Haugen, EM, Cucci, TL (1995) Overestimation of heterotrophic bacteria in the Sargasso Sea: Direct evidence by flow and imaging cytometry. Deep-Sea Res 42: 1399–1409

    Article  Google Scholar 

  67. Son, S-K, Son, J-W, Kim, KH, Kang, JH, Chi, S-B, Yoo, CM, Park, 718 C-K, Kim, W-S (2004) Inorganic nutrient distributions in associ- 719 ation with thermocline at KOMO station in the northeast equatorial Pacific ocean during 1995–2002. Ocean Polar Res 26: 377–384

    Article  Google Scholar 

  68. Strom, SL (2000) Bacterivory: Interactions between bacteria and their grazers. In: Kirchman DL (Ed.) Microbial Ecology of the Oceans. Wiley-Liss. New York, pp 351–386

    Google Scholar 

  69. Sundh, I (1992) Biochemical composition of dissolved organic carbon derived from phytoplankton and used by heterotrophic bacteria. Appl Environ Microbiol 58: 2938–2947

    PubMed  CAS  Google Scholar 

  70. Thingstad, TF, Zweifel, UL, Rassoulzadegan, F (1998) P limitation of both phytoplankton and heterotrophic bacteria in NW Mediterranean summer surface waters. Limnol Oceanogr 43: 88–94

    Article  CAS  Google Scholar 

  71. Tortell, PD, Maldonado, MT, Price, NM (1996) The role of heterotrophic bacteria in iron-limited ocean ecosystems. Nature 383: 330–332

    Article  CAS  Google Scholar 

  72. Zohary, T, Robarts, RD (1998) Experimental study of microbial P limitation in the eastern Mediterranean. Limnol Oceanogr 43: 387–395

    CAS  Google Scholar 

Download references

Acknowledgments

I thank the captain and crews of R/V Onnuri and research staffs of the KODOS program. Two anonymous reviewers are acknowledged for their comments that improved the early version of the manuscript. Shipboard experimental results were obtained by a grant from Korean Ministry of Maritime Affairs and Fisheries (PM00104), and revisiting to interpret the original data for publication was possible by the grant from Basic Research Program of KORDI (PE97003 and PE97103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung-Ho Hyun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hyun, JH. Resource-Limited Heterotrophic Prokaryote Production and Its Potential Environmental Impact Associated with Mn Nodule Exploitation in the Northeast Equatorial Pacific. Microb Ecol 52, 244–252 (2006). https://doi.org/10.1007/s00248-006-9012-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-006-9012-5

Keywords

Navigation