Skip to main content
Log in

Zinc Phosphate Transformations by the Paxillus involutus/Pine Ectomycorrhizal Association

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

In this research, we investigate zinc phosphate transformations by Paxillus involutus/pine ectomycorrhizas using zinc-resistant and zinc-sensitive strains of the ectomycorrhizal fungus under high- and low-phosphorus conditions to further understand fungal roles in the transformation of toxic metal minerals in the mycorrhizosphere. Mesocosm experiments with ectomycorrhizas were performed under sterile conditions with zinc phosphate localized in cellophane bags: zinc and phosphorus mobilization and uptake by the ectomycorrhizal biomass were analyzed. In the presence of a phosphorus source, an ectomycorrhizal association with a zinc-resistant strain accumulated the least zinc compared to a zinc-sensitive ectomycorrhizal association and non-mycorrhizal plants. Under low-phosphorus conditions, mycorrhizal seedlings infected with the zinc-resistant strain increased the dissolution of zinc phosphate and zinc accumulation by the plant. Extended X-ray absorption fine structure analysis of both mycorrhizal and nonmycorrhizal roots showed octahedral coordination of zinc by oxygen-containing ligands such as carboxylates or phosphate. We conclude that zinc phosphate solubilization and zinc and phosphorus uptake by the association depend on ectomycorrhizal infection, strain of the mycobiont, and the phosphorus status of the matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Ahonen-Jonnarth, U, Finlay, RD (2001) Effects of elevated nickel and cadmium concentrations on growth and nutrient uptake of mycorrhizal and non-mycorrhizal Pinus sylvestris seedlings. Plant Soil 236: 129–138

    Article  CAS  Google Scholar 

  2. Ahonen-Jonnarth, U, Goransson, A, Finlay, RD (2003) Growth and nutrient uptake of ectomycorrhizal Pinus sylvestris seedlings in a natural substrate treated with elevated Al concentrations. Tree Physiol 23: 157–167

    PubMed  CAS  Google Scholar 

  3. Adriaensen, K, Van der Lelie, D, Van Laere, A, Vangrosveld, J, Colpaert, JV (2003) A zinc-adapted fungus protects pines from zinc stress. New Phytol 161: 549–555

    Article  CAS  Google Scholar 

  4. Binsted, N (1998) Daresbury Laboratory EXCURV98 Program

  5. Binsted, N, Strange, RW, Hasnain, SS (1992) Constrained and restrained refinement in EXAFS data analysis with curved wave theory. Biochem 31: 12117–12125

    Article  PubMed  CAS  Google Scholar 

  6. Brown, MT, Wilkins, DA (1985) Zinc tolerance of mycorrhizal Betula. New Phytol 99: 101–106

    Article  CAS  Google Scholar 

  7. Brown, S, Chaney, R, Hallfrisch, J, Ryan, JA, Berti, WR (2004) In situ soil treatments to reduce the phyto- and bioavailability of lead, zinc, and cadmium. J Environ Qual 33: 522–531

    Article  PubMed  CAS  Google Scholar 

  8. Bu¨cking, H, Heyser, W (1999) Elemental composition and function of polyphosphates in ectomycorrhizal fungi—an X-ray microanalytical study. Mycol Res 103: 31–39

    Article  Google Scholar 

  9. Burford, EP, Fomina, M, Gadd, GM (2003) Fungal involvement in bioweathering and biotransformation of rocks and minerals. Mineral Mag 67: 1127–1155

    Article  CAS  Google Scholar 

  10. Burgstaller, W, Schinner, F (1993) Leaching of metals with fungi. J Biotechnol 27: 91–116

    Article  CAS  Google Scholar 

  11. Burleigh, SH, Cavagnaro, T, Jakobsen, I (2002) Functional diversity of arbuscular mycorrhizas extends to the expression of plant genes involved in P nutrition. J Exp Bot 53: 1593–1601

    Article  PubMed  CAS  Google Scholar 

  12. Chen, X-B, Wright, JV, Conca, JL, Peurrung, LM (1997) Evaluation of heavy metal remediation using mineral apatite. Water Air Soil Pollut 98: 57–78

    CAS  Google Scholar 

  13. Colpaert, JV, Van Assche, JA (1992) Zinc toxicity in ectomycorrhizal Pinus sylvestris. Plant Soil 143: 201–211

    Article  CAS  Google Scholar 

  14. Colpaert, JV, Vandenkoornhuyse, P, Adriaensen, K, Vangronsveld, J (2000) Genetic variation and heavy metal tolerance in the ectomycorrhizal basidiomycete Suillus luteus. New Phytol 147: 367–379

    Article  CAS  Google Scholar 

  15. Colpaert, JV, Muller, LAH, Lambaerts, M, Andriaensen, K, Vangronsveld, J (2004) Evolutionary adaptation to Zn toxicity in populations of Suilloid fungi. New Phytol 162: 549–559

    Article  CAS  Google Scholar 

  16. Conca, JL (1997) Phosphate-induced metal stabilization (PIMS). Final report to the U.S. Environmental Protection Agency 68D60023, Res. Triangle Park, NC

  17. Duff, SMG, Sarath, G, Plaxton, WC (1994) The role of acid phosphatases in plant phosphorus metabolism. Physiol Plant 90: 791–800

    Article  CAS  Google Scholar 

  18. Fomina, M, Alexander, IJ, Hillier, S, Gadd, GM (2004) Zinc phosphate and pyromorphite solubilization by soil plant-symbiotic fungi. Geomicrobiol J 21: 351–366

    Article  CAS  Google Scholar 

  19. Fomina, M, Alexander, IJ, Colpaert, JV, Gadd, GM (2005) Solubilization of toxic metal minerals and metal tolerance of mycorrhizal fungi. Soil Biol Biochem 37: 857–866

    Article  CAS  Google Scholar 

  20. Gadd, GM (1993) Interactions of fungi with toxic metals. New Phytol 124: 25–60

    Article  CAS  Google Scholar 

  21. Gilroy, S, Jones, DL (2000) Through form to function: root hair development and nutrient uptake. Trends Plant Sci 5: 56–60

    Article  PubMed  CAS  Google Scholar 

  22. Greger, M (1999) Metal availability and bioconcentration in plants. In: Prasad, MNV, Hagemeyer, J (Eds.) Heavy Metal Stress in Plants from Molecules to Ecosystem. Springer-Verlag, Berlin, Heidelberg, Germany, pp 1–27

  23. Gurman, SJ, Binsted, N, Ross, I (1984) A rapid, exact, curved-wave theory for EXAFS calculations. J Phys Chem 17: 143–151

    CAS  Google Scholar 

  24. Gurman, SJ, Binsted, N, Ross, I (1986) A rapid, exact, curved-wave theory for EXAFS calculations. 2. The multiple-scattering contributions. J Phys Chem 19: 1845–1861

    Google Scholar 

  25. Hartley-Whitaker, J, Cairney, JWG, Meharg, AA (2000) Sensitivity to Cd and Zn of host and symbiont of ectomycorrhizal Pinus sylvestris L. (Scots pine) seedlings. Plant Soil 218: 31–42

    Article  CAS  Google Scholar 

  26. Hedin, L, Lundqvist, S (1969) Effects of electron–electron and electron–phonon interactions on the one-electron states of solids. Solid State Phys 23: 1–181

    Article  CAS  Google Scholar 

  27. Heuwinkel, H, Kirkby, EA, Bot, J Le, Marschner, H (1992) Phosphorus deficiency enhances molybdenum uptake by tomato plants. J Plant Nutr 15: 549–568

    Article  CAS  Google Scholar 

  28. Horst, WJ, Kamh, M, Jibrin, JM, Chude, VA (2001) Agronomic measures for increasing P availability to crops. Plant Soil 237: 211–233

    Article  CAS  Google Scholar 

  29. Huang, C, Barker, SJ, Langridge, P, Smith, FW, Graham, D (2000) Zinc deficiency up-regulates expression of high-affinity phosphatetransporter genes in both phosphate-sufficient and -deficient barley roots. Plant Physiol 124: 415–422

    Article  PubMed  CAS  Google Scholar 

  30. Ingestad, T (1979) Mineral nutrient requirements of Pinus sylvestris and Picea abies seedlings. Physiol Plant Pathol 45: 373–380

    Article  CAS  Google Scholar 

  31. Jentschke, G, Godbold, DL (2000) Metal toxicity and ectomycorrhizas. Physiol Plant 109: 107–116

    Article  CAS  Google Scholar 

  32. Jones, MD, Hutchinson, TC (1988) Nickel toxicity in mycorrhizal birch seedlings infected with Lactarius rufus or Scleroderma flavidum. II Uptake of nickel, calcium, magnesium, phosphorus and iron. New Phytol 108: 461–470

    Article  CAS  Google Scholar 

  33. Jongmans, AG, Van Breemen, N, Lundstrom, U, Van Hees, PAW, Finlay, RD, Srinivasan, M, Unestam, T, Giesler, R, Melkerud, PA, Olsson, M (1997) Rock-eating fungi. Nature 389: 682–683

    Article  CAS  Google Scholar 

  34. Koide, RT, Kabir, Z (2001) Nutrient economy of red pine affected by interactions between Pisolithus tinctorius and other forest-floor microbes. New Phytol 105: 179–188

    Article  Google Scholar 

  35. Lajtha, K, Harrison, AF (1995) Strategies of phosphorus acquisition and conservation by plant species and communities. In: Tiessen, H (Ed.) Phosphorus in the Global Environment. John Wiley Sons Ltd, Chichester, UK, pp 140–147

    Google Scholar 

  36. Lapeyrie, F, Ranger, J, Vairelles, D (1991) Phosphate-solubilizing activity of ectomycorrhizal fungi in vitro. Can J Bot 69: 342–346

    Article  CAS  Google Scholar 

  37. Lapeyrie, F, Ranger, J, Vairelles, D (1991) Phosphate-solubilizing activity of ectomycorrhizal fungi in vitro. Can J Bot 69: 342–346

    Google Scholar 

  38. Lundstrom, US, Van Breemen, N, Bain, D (2000) The podzolization process. A review. Geoderma 94: 91–107

    Article  CAS  Google Scholar 

  39. Lynch, JP, Brown, KM (2001) Topsoil foraging—an architectural adaptation of plants to low phosphorus. Plant Soil 237: 225–237

    Article  CAS  Google Scholar 

  40. Macfall, J, Slack, SA, Iyer, J (1991) Effects of Hebeloma arenosa and phosphorus fertility on growth of red pine (Pinus resinosa) seedlings. Can J Bot 69: 372–379

    Article  CAS  Google Scholar 

  41. Marschner, H, Römheld, V, Horst, WJ, Martin, P (1986) Root induced changes in the rhizosphere: importance for mineral nutrition of plants. Z Pflanzenernähr Bodenkd 149: 441–456

    Article  CAS  Google Scholar 

  42. Martino, E, Perotto, S, Parsons, R, Gadd, GM (2003) Solubilization of insoluble inorganic zinc compounds by ericoid mycorrhizal fungi derived from heavy metal polluted sites. Soil Biol Biochem 35: 133–141

    Article  CAS  Google Scholar 

  43. Meharg, AA (2003) The mechanistic basis of interactions between mycorrhizal associations and toxic metal cations. Mycol Res 107: 1253–1265

    Article  PubMed  CAS  Google Scholar 

  44. Meharg, AA, Cairney, JWG (2000) Co-evolution of mycorrhizal symbionts and their hosts to metal-contaminated environments. Adv Ecol Res 30: 69–112

    Article  CAS  Google Scholar 

  45. Olsen, SR, Sommers, LE (1982) Phosphorus. In: Page, AL, Miller, RH, Keeney, DR (Eds.) Methods of Soil Analysis. Part 2, Chemical and Microbiological Properties. American Society of Agronomy, Madison, USA, pp 403–429

    Google Scholar 

  46. Perotto, S, Martino, E (2001) Molecular and cellular mechanisms of heavy metal tolerance in mycorrhizal fungi: what perspectives for bioremediation? Minerva Biotechnol 13: 55–63

    Google Scholar 

  47. Peterson, RL, Chakravarty, P (1991) In: Norris, JR, Read, DJ, Varma, AK (Eds.) Techniques for Mycorrhizal Research. Academic Press, London, pp 75–105

    Chapter  Google Scholar 

  48. Sarret, G, Manceau, A, Cuny, D, Van Haluwyn, C, Deruelle, S, Hazemann, J-L, Soldo, Y, Eybert-Berard, L, Menthonnex, J-J (1998) Mechanisms of lichen resistance to metallic pollution. Environ Sci Technol 32: 3325–3330

    Article  CAS  Google Scholar 

  49. Sarret, G, Saumitou-Laprade, P, Bert, V, Proux, O, Hazemann, J-L, Traverse, A, Marcus, MA, Manceau, A (2002) Forms of zinc accumulated in the hyperaccumulator Arabidopsis halleri. Plant Physiol 130: 1815–1826

    Article  PubMed  CAS  Google Scholar 

  50. Sarret, G, Balesdent, J, Bouziri, L, Garnier, J-M, Marcus, MA, Geoffroy, N, Panfili, F, Manceau, A (2004) Zn speciation in the organic horizon of a contaminated soil by micro-X-ray fluorescence, micro- and powder-EXAFS spectroscopy, and isotopic dilution. Environ Sci Technol 38: 2792–2801

    Article  PubMed  CAS  Google Scholar 

  51. Sayer, JA, Raggett, SL, Gadd, GM (1995) Solubilization of insoluble compounds by soil fungi: development of a screening method for solubilizing ability and metal tolerance. Mycol Res 99: 987–993

    Article  CAS  Google Scholar 

  52. Sayer, JA, Cotter-Howells, JD, Watson, C, Hillier, S, Gadd, GM (1999) Lead mineral transformation by fungi. Curr Biol 9: 691–694

    Article  PubMed  CAS  Google Scholar 

  53. Setala, H, Rissanen, J, Markkola, AM (1997) Conditional outcomes in the relationship between pine and ectomycorrhizal fungi in relation to biotic and abiotic environment. Oikos 80: 112–122

    Article  Google Scholar 

  54. Schwamberger, EC, Sims, JL (1991) Effect of soil pH, nitrogen source, phosphorus, and molybdenum on early growth and mineral nutrition of burley tobacco. Commun Soil Sci Plant Anal 22: 641–657

    Article  CAS  Google Scholar 

  55. Schachtman, DP, Reid, RJ, Ayling, SM (1998) Phosphorus uptake by plants: from soil to cell. Plant Physiol 116: 447–453

    Article  PubMed  CAS  Google Scholar 

  56. Shetty, KG, Hetrick, BAD, Schwab, AP (1995) Effects of mycorrhizae and fertilizer amendments on zinc tolerance of plants. Environ Pollut 88: 307–314

    Article  PubMed  CAS  Google Scholar 

  57. Sjöström, E (1993) Wood chemistry. Fundamentals and Applications. 2nd ed. Academic Press Inc. Orlando, FL, USA

    Google Scholar 

  58. Smith, FW, Rae, AL, Hawkesford, MJ (2000) Molecular mechanisms of phosphate and sulfate transport in plants. Biochim Biophys Acta 1465: 236–245

    Article  PubMed  CAS  Google Scholar 

  59. Sundén, A, Brelid, H, Rindby, A, Engström, P (2000) Spatial distribution and modes of chemical attachment of metal ions in spruce wood. J Pulp Paper Sci 26: 352–357

    Google Scholar 

  60. Tibbett, M, Sanders, FE (2002) Ectomycorrhizal symbiosis can enhance plant nutrition through improved access to discrete organic nutrient patches of high resource quality. Ann Bot 89: 783–789

    Article  PubMed  CAS  Google Scholar 

  61. Van Tichelen, KK, Colpaert, JV, Vangronsveld, J (2001) Ectomycorrhizal protection of Pinus sylvestris against copper toxicity. New Phytol 150: 203–213

    Article  Google Scholar 

  62. Topa, MA, Cheeseman, JM (1992) Carbon and phosphorus partitioning in Pinus serotina seedlings growing under hypoxic and low-phosphorus conditions. Tree Physiol 10: 195–207

    PubMed  CAS  Google Scholar 

  63. Vance, CP (2001) Symbiotic nitrogen fixation and phosphorus acquisition: plant nutrition in a world of declining renewable resources. Plant Physiol 127: 390–397

    Article  PubMed  CAS  Google Scholar 

  64. Vance, CP, Uhde-Stone, C, Allan, DL (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a non-renewable resource. New Phytol 157: 423–447

    Article  CAS  Google Scholar 

  65. Vodnik, D, Jentschke, G, Fritz, E, Gogala, N, Godbold, DL (1999) Root-applied cytokinin reduces lead uptake and affects its distribution in Norway spruce seedlings. Plant Physiol 106: 75–81

    Article  CAS  Google Scholar 

  66. Wallander, H, Wickman, T, Jacks, G (1997) Apatite as a P source in mycorrhizal and non-mycorrhizal Pinus sylvestris seedlings. Plant Soil 196: 123–131

    Article  CAS  Google Scholar 

  67. Whitelaw, MA (2000) Growth promotion of plants inoculated with phosphate-solubilizing fungi. Adv Agron 69: 99–151

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by the BBSRC/BIRE program (94/BRE13640), BNFL, and CCLRC Daresbury SRS (SRS user grant 40107). We thank Dr. Jan Colpaert and Miss Kristin Adriaensen (Limburgs University Centre, Belgium) for the provision of fungal strains. We are very grateful to Dr. Lorrie Murphy and Dr. Fred Mosselmans (Stations 7.1, CLRC Daresbury SRS, UK) for their help with X-ray absorption spectroscopy and to Mr. Martin Kierans [Centre for High Resolution Imaging and Processing (CHIPs), School of Life Sciences, University of Dundee, Scotland] for assistance with cryo-scanning electron microscopy. We are also very grateful to Prof. John Raven FRS (School of Life Sciences, University of Dundee) for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey M. Gadd.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fomina, M., Charnock, J.M., Hillier, S. et al. Zinc Phosphate Transformations by the Paxillus involutus/Pine Ectomycorrhizal Association. Microb Ecol 52, 322–333 (2006). https://doi.org/10.1007/s00248-006-9004-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-006-9004-5

Keywords

Navigation