Skip to main content
Log in

Low Persistence of Bacillus thuringiensis Serovar israelensis Spores in Four Mosquito Biotopes of a Salt Marsh in Southern France

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

We studied the persistence of Bacillus thuringiensis serovar israelensis (Bti) in a typical breeding site of the mosquito Ochlerotatus caspius in a particularly sensitive salt marsh ecosystem following two Bti-based larvicidal applications (Vectobac®12AS, 1.95 L/ha). The treated area was composed of four larval biotopes that differed in terms of the most representative plant species (Sarcocornia fruticosa, Bolboschoenus maritimus, Phragmites australis, and Juncus maritimus) and the physical and chemical characteristics of the soil. We sampled water, soil, and plants at various times before and after the applications (from spring to autumn, 2001) and quantified the spores of B. thuringiensis (Bt) and Bacillus species. The B. cereus group accounted for between 0% and 20% of all Bacillus spp. before application depending on the larval biotope. No Bti were found before application. The variation in the quantity of bacilli during the mosquito breeding season depended more on the larval biotope than on the season or the larvicidal application. More bacilli were found in soil (104–106 spores/g) than on plant samples (102–104 spores/g). The abundance in water (105 to 107 spores/L) appeared to be correlated to the water level of the breeding site. The number of Bti spores increased just after application, after declining; no spores were detected in soil or water 3 months after application. However, low numbers of Bti spores were present on foliage from three of the four studied plant strata. In conclusion, the larvicidal application has very little impact on Bacillus spp. flora after one breeding season (two applications).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

Notes

  1. Entente Interdépartementale pour la Démoustication du littoral méditerranéen, Interdepartmental alliance for mosquito control along the French Mediterranean coastline, http://www.eid-med.org.

References

  1. InstitutionalAuthorNameAmerican Society of Agronomy (1965) Methods of Soil Analysis American Society of Agronomy Madison, WI

    Google Scholar 

  2. N Becker M Ludwig (1993) ArticleTitleInvestigations on possible resistance in Aedes vexans field populations after a 10-year application of Bacillus thuringiensis israelensis J Am Mosq Control Assoc 9 221–224 Occurrence Handle8350079 Occurrence Handle1:STN:280:DyaK3szltlWksQ%3D%3D

    PubMed  CAS  Google Scholar 

  3. N Becker (2002) ArticleTitleSterilization of Bacillus thuringiensis israelensis products by gamma radiation J Am Mosq Control Assoc 18 57–62 Occurrence Handle11998932

    PubMed  Google Scholar 

  4. CC Beegle HT Dulmage DA Wolfenbarger E Martinez (1981) ArticleTitlePersistence of Bacillus thuringiensis Berliner insecticidal activity on cotton foliage Environ Entomol 10 400–401

    Google Scholar 

  5. M Boisvert J Boisvert (1999) ArticleTitlePersistence of toxic activity and recycling of Bacillus thuringiensis var. israelensis in cold water: field experiments using diffusion chambers in a pond Biocontrol Sci Technol 10 517–561

    Google Scholar 

  6. Chappuis, S (2002) Approches moléculaire de l'impact de Bacillus thuringiensis en tant que biopesticide. Persistance et transfert génétique horizontal, après 12 ans d'applications dans une zone humide protégée (Bolle di Magadino). PhD thesis (N: 3377) Université de Genève, Switzerland, pp 110

    Google Scholar 

  7. CS Charbonneau RD Drobney CF Rabeni (1994) ArticleTitleEffects of Bacillus thuringiensis var. israelensis on nontarget benthic organisms in lentic habitat and factors affecting the efficacy of the larvicide Environ Toxicol Chem 13 267–279 Occurrence Handle1:CAS:528:DyaK2cXhsFKhtb0%3D

    CAS  Google Scholar 

  8. J Cousserans A Gabinaud P Simonneau G Sinègre (1969) ArticleTitleLes bases écologiques de la démoustication. Méthodes de réalisation et d'utilisation de la carte phyto-écologique Vie Milieu, Biol Terr C 20 19

    Google Scholar 

  9. PH Damgaard H Malinowski B Glowacka J Eilenberg (1996) ArticleTitleDegradation of Bacillus thuringiensis serovar kurstaki after aerial application to a Polish pine stand Bull OILB-SROP 19 61–65

    Google Scholar 

  10. PH Damgaard BM Hansen JC Pedersen J Eilenberg (1997) ArticleTitleNatural occurrence of Bacillus thuringiensis on cabbage foliage and in insects associated with cabbage crops J Appl Microbiol 82 253–258 Occurrence Handle12452602 Occurrence Handle1:STN:280:DC%2BD38nptFamsA%3D%3D

    PubMed  CAS  Google Scholar 

  11. H Barjac Particlede A Bonnefoi (1962) ArticleTitleEssai de classification biochimique et sérologique de 24 souches de Bacillus de type B. thuringiensis Entomophaga 7 5–31

    Google Scholar 

  12. H Barjac Particlede (1981) Insects pathogens in the genus Bacillus Berkeley Goodfellow (Eds) Aerobic Endospore-Forming Bacteria: Classification and Identification Academic Press London 241–249

    Google Scholar 

  13. AJ DeLucca JG Simonson AD Larson (1981) ArticleTitleBacillus thuringiensis distribution in soils of the United States Can J Microbiol 27 865–870 Occurrence Handle7306875

    PubMed  Google Scholar 

  14. InstitutionalAuthorNameFAO (1990) Guidelines for Sol Profile Description FAO/ISRIC Rome

    Google Scholar 

  15. Gabinaud, A (1986) La cartographie écologique appliquée à la démoustication rurale. Soc Vect Ecol Montpellier: 17

    Google Scholar 

  16. TR Glare M O'Callagan (2000) Bacillus thuringiensis: Biology, Ecology and Safety John Wiley and Sons LTD Chichester

    Google Scholar 

  17. LJ Goldberg J Margalit (1977) ArticleTitleA bacterial spore demonstrating rapid larvicidal activity against Anopheles sergentii, Uranotaenia unguiculata, Culex univitatus, Aedes aegypti and Culex pipiens Mosq News 37 355–358

    Google Scholar 

  18. NB Hendriksen BM Hansen (2002) ArticleTitleLongterm survival and germination of Bacillus thuringiensis var. kurstaki in a field trial Can J Microbiol 48 256–261 Occurrence Handle11989770 Occurrence Handle10.1139/w02-009 Occurrence Handle1:CAS:528:DC%2BD38XivFGmtbs%3D

    Article  PubMed  CAS  Google Scholar 

  19. JM Hougard P Poudiougo P Guillet C Back LK Akpoboua D Quillevere (1993) ArticleTitleCriteria for the selection of larvicides by the Onchocerciasis Control Programme in West Africa Ann Trop Med Parasitol 87 435–442 Occurrence Handle8311567 Occurrence Handle1:STN:280:DyaK2c7ksFWquw%3D%3D

    PubMed  CAS  Google Scholar 

  20. T Ichimatsu E Mizuki K Nishimura T Akao H Saitoh K Higuchi M Ohba (2000) ArticleTitleOccurrence of Bacillus thuringiensis in fresh waters of Japan Curr Microbiol 40 217–220 Occurrence Handle10688688 Occurrence Handle10.1007/s002849910044 Occurrence Handle1:CAS:528:DC%2BD3cXitFaru7k%3D

    Article  PubMed  CAS  Google Scholar 

  21. InstitutionalAuthorNameInternational Programme on Chemical Safety (1999) Microbial Pest Control Agent Bacillus thuringiensis WHO Geneva

    Google Scholar 

  22. J Iriarte M Porcar M Lecadet P Caballero (2000) ArticleTitleIsolation and characterization of Bacillus thuringiensis strains from aquatic environments in Spain Curr Microbiol 40 402–408 Occurrence Handle10827284 Occurrence Handle1:CAS:528:DC%2BD3cXkt1Sgtbk%3D

    PubMed  CAS  Google Scholar 

  23. KB Joung JC Côté (2000) Une Analyse des Incidences Environnementales de l'insecticide Microbien Bacillus thuringiensis Centre de recherche et de développement en horticulture (Bull. Techn. 29). Agriculture et Agroalimentaire, Canada

    Google Scholar 

  24. LA Lacey MS Mulla (1990) Safety of Bacillus thuringiensis (H14)and Bacillus sphaericus to non-target organisms in the aquatic environment M Laird LA Lacey EW Davidson (Eds) Safety of Microbial Insecticides CRC Press Boca Raton, FL 169–188

    Google Scholar 

  25. UK Laemmli (1970) ArticleTitleCleavage of structural proteins during the assembly of the head of bacteriophage T4 Nature 227 680–685 Occurrence Handle5432063 Occurrence Handle10.1038/227680a0 Occurrence Handle1:CAS:528:DC%2BD3MXlsFags7s%3D

    Article  PubMed  CAS  Google Scholar 

  26. MM Lecadet E Frachon V Cosmao Dumanoir H Ripouteau S Hamon P Laurent I Thiery (1999) ArticleTitleUpdating the H-antigen classification of Bacillus thuringiensis J Appl Microbiol 86 660–672 Occurrence Handle10212410 Occurrence Handle10.1046/j.1365-2672.1999.00710.x Occurrence Handle1:CAS:528:DyaK1MXivVCmtr0%3D

    Article  PubMed  CAS  Google Scholar 

  27. KLH Leong RJ Cano AM Kubinski (1980) ArticleTitleFactors affecting Bacillus thuringiensis total field persistence Environ Entomol 9 593–599

    Google Scholar 

  28. M Maeda E Mizuki Y Nakamura T Hatano M Ohba (2000) ArticleTitleRecovery of Bacillus thuringiensis from marine sediments of Japan Curr Microbiol 40 418–422 Occurrence Handle10827286 Occurrence Handle1:CAS:528:DC%2BD3cXkt1Sgtbc%3D

    PubMed  CAS  Google Scholar 

  29. FS Mulligan CH Schaefer WH Wilder (1980) ArticleTitleEfficacy and persistence of Bacillus sphaericus and B. thuringiensis H. 14 against mosquitoes under laboratory and field conditions J Econ Entomol 73 684–688

    Google Scholar 

  30. TT Nguyen T Su MS Mulla (1999) ArticleTitleMosquito control and bacterial flora in water enriched with organic matter and treated with Bacillus thuringiensis subsp. israelensis and Bacillus sphaericus formulations J Vector Ecol 24 138–153 Occurrence Handle10672543 Occurrence Handle1:STN:280:DC%2BD3c7js1CqtQ%3D%3D

    PubMed  CAS  Google Scholar 

  31. TT Nguyen T Su MS Mulla (1999) ArticleTitleBacteria and mosquito abundance in microcosms enriched with organic matter and treated with a Bacillus thuringiensis subsp. israelensis formulation J Vector Ecol 24 191–201 Occurrence Handle10672549 Occurrence Handle1:STN:280:DC%2BD3c7js1GjsQ%3D%3D

    PubMed  CAS  Google Scholar 

  32. C Nielsen-LeRoux F Pasquier JF Charles G Sinègre B Gaven N Pasteur (1997) ArticleTitleResistance to Bacillus sphaericus involves different mechanisms in Culex pipiens mosquito larvae (Diptera: Culicidae) J Med Entomol 34 321–327 Occurrence Handle9151498 Occurrence Handle1:CAS:528:DyaK2sXjsFamu7w%3D

    PubMed  CAS  Google Scholar 

  33. M Ohba K Aizawa (1986) ArticleTitleDistribution of Bacillus thuringiensis in soils of Japan J Invertebr Pathol 47 277–282

    Google Scholar 

  34. S Pantuwatana J Sattabongkot (1990) ArticleTitleComparison of development of Bacillus thuringiensis subsp. israelensis and Bacillus sphaericus in mosquito larvae J Invertebr Pathol 155 189–201

    Google Scholar 

  35. DE Pinnock RJ Brand KL Jackson JE Milstead (1974) ArticleTitleThe field persistence of Bacillus thuringiensis spores on Cercis occidentalis leaves J Invertebr Pathol 23 341–346 Occurrence Handle4833176 Occurrence Handle1:STN:280:DyaE2c7ms1Ghsg%3D%3D

    PubMed  CAS  Google Scholar 

  36. M Porcar V Juarez-Perez (2003) ArticleTitlePCR-based identification of Bacillus thuringiensis pesticidal crystal genes FEMS Microbiol Rev 26 419–432 Occurrence Handle12586389 Occurrence Handle10.1016/S0168-6445(02)00128-6 Occurrence Handle1:CAS:528:DC%2BD3sXhtVGis78%3D

    Article  PubMed  CAS  Google Scholar 

  37. JA Rioux H Croset JJ Corre P Simonneau G Gras (1968) ArticleTitlePhyto-ecological basis of mosquito control: cartography of larval biotopes Mosq News 28 572–582

    Google Scholar 

  38. SM Saleh RF Harris ON Allen (1970) ArticleTitleFate of Bacillus thuringiensis in soil: effect of soil pH and organic amendment Can J Microbiol 16 677–680 Occurrence Handle4921875 Occurrence Handle1:CAS:528:DyaE3cXks1ent7Y%3D Occurrence Handle10.1139/m70-116

    Article  PubMed  CAS  Google Scholar 

  39. W Sheeran SW Fisher (1992) ArticleTitleThe effects of agitation, sediment, and competition on the persistence and efficacy of Bacillus thuringiensis var. israelensis (Bti) Ecotoxicol Environ Saf 24 338–346 Occurrence Handle1282879 Occurrence Handle10.1016/0147-6513(92)90010-Z Occurrence Handle1:CAS:528:DyaK3sXoslWmtA%3D%3D

    Article  PubMed  CAS  Google Scholar 

  40. JP Siegel AR Smith RJ Novak (2001) ArticleTitleRecovery of commercially produced Bacillus thuringiensis var. israelensis and Bacillus sphaericus from tires and prevalence of bacilli in artificial and natural containers J Am Mosq Control Assoc 17 33–41 Occurrence Handle11345416 Occurrence Handle1:STN:280:DC%2BD3M3ktFartg%3D%3D

    PubMed  CAS  Google Scholar 

  41. RA Smith JW Barry (1998) ArticleTitleEnvironmental persistence of Bacillus thuringiensis spores following aerial application J Invertebr Pathol 71 263–267 Occurrence Handle9538032 Occurrence Handle1:STN:280:DyaK1c3gslSkuw%3D%3D

    PubMed  CAS  Google Scholar 

  42. PHA Sneath (1986) Endospore forming Gram-positive rods and cocci PHA Sneath NS Mar ME Sharpe JG Holt (Eds) Bergey's Manual of Systematic Bacteriology, Vol. 2 Williams & Wilkins Baltimore, MD 1104–1140

    Google Scholar 

  43. AA Sorenson LA Falcon (1980) ArticleTitleComparison of microdroplet and high volume application of Bacillus thuringiensis on pear suppression of fruit tree leaf roller Acrhips argyrospilus and coverage on foliage and fruit Environ Entomol 9 350

    Google Scholar 

  44. DP Stahly RE Andrews AA Yousten (1991) The genus Bacillus-insect pathogens A Balows HG Truper M Dworkin W Harder KH Schleifer (Eds) The Prokaryotes, Vol. 2 EditionNumber2 Springer-Verlag New York 1697–1745

    Google Scholar 

  45. I Thiéry E Frachon (1997) Identification, isolation, culture and preservation of entomopathogenic bacteria L Lacey (Eds) Manual of Techniques in Insect Pathology Academic Press London 56–77

    Google Scholar 

  46. AW West HD Burges JR White CH Wyborn (1984) ArticleTitlePersistence of Bacillus thuringiensis parasporal crystal insecticidal activity in soil J Invertebr Pathol 44 128–133

    Google Scholar 

  47. A Yousten F Genthner E Benfield (1992) ArticleTitleFate of Bacillus sphaericus and Bacillus thuringiensis serovar israelensis in the aquatic environment J Am Mosq Control Assoc 8 143–148 Occurrence Handle1431856 Occurrence Handle1:STN:280:DyaK3s%2FlslCmtg%3D%3D

    PubMed  CAS  Google Scholar 

  48. JH Zar (1999) Biostatistical Analysis Prentice-Hall Upper Saddle River, NJ

    Google Scholar 

  49. W Zhang DR Montgomery (1994) ArticleTitleDigital elevation model grid size, landscape representation and hydrologic simulations Water Resour Res 30 1019–1028

    Google Scholar 

Download references

Acknowledgments

We thank G. Metge and J.-F. Charles for their help in establishing this study. We thank J.-A. Rioux and J. Cousserans for help in revising the manuscript. We deeply appreciate the help of Pr. J.-P. Legros for the soil profile description. We are grateful to Alex Edelman & Associates and O. Moussiegt for help in translation and correction of the manuscript. We thank Nicolas Sidos for help in doing the digital elevation model and advice about geographical localization. M. Hajaij received financial support from the Ministry of Higher Education, Tunisia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Carron.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hajaij, M., Carron, A., Deleuze, J. et al. Low Persistence of Bacillus thuringiensis Serovar israelensis Spores in Four Mosquito Biotopes of a Salt Marsh in Southern France. Microb Ecol 50, 475–487 (2005). https://doi.org/10.1007/s00248-005-0247-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-005-0247-3

Keywords

Navigation