Microbial Ecology

, Volume 51, Issue 2, pp 147–153 | Cite as

Improved Strategy for Comparing Microbial Assemblage Fingerprints

  • Ian Hewson
  • Jed A. Fuhrman


Microbial fingerprinting techniques permit the rapid visualization of entire assemblages in single assays, allowing direct comparison of communities in different samples, where the null hypothesis of such analyses is that all samples are the same. The comparison of fingerprints relies upon the precise estimation of all amplified DNA fragment lengths, which correspond to operational taxonomic units (OTU; analogous, but not equal to, a taxon in macroorganism studies). However, computer interpolation of size standards (and consequently OTU size calling) can be imprecise between gel runs, which can lead to imprecise calculation of similarity indices between multiple assemblages. To account for OTU size calling imprecision, all fragments within a range of sizes (a window) can be combined (i.e., “binned”) where the window is as wide as the imprecision of OTU size calling. However, artifacts may occur upon binning samples that may cause samples to appear less similar to each other, caused by splitting of OTU between adjacent bin windows. In this work we present an improved binning technique that accounts for OTU size calling imprecision in the comparison of multiple fingerprints. This technique comprises binning all pairwise comparisons in multiple bin window frames, where the starting size of the window (i.e., frame) is shifted by +1 bp for a total of x frames, where x bp is the width of the maximum bin window size in any binning scheme. Pairwise similarity indices between different community fingerprints are calculated for each of the x frames. To best address the null hypothesis of the community comparison, the maximum similarity value of all x frames is then used in downstream analyses to compare the communities. We believe this binning technique provides the most accurate and least biased comparison between different microbial fingerprints.


Operational Taxonomic Unit Terminal Restriction Fragment Length Polymorphism Jaccard Index Window Frame Community Fingerprint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank S. Thakkar, J. Steele, M. Schwalbach, M. Brown, P. Countway, X. Liang, X. Hernandez, and A. Patel (USC) for input on initial binning procedures; C. Kitts and A. Kent for provision of the AAArayData macro; C. Heil, G. Vargo (U. South Florida), D. Capone, M. Neumann (USC), M.Carrathers (Ashland U), A. Watkinson, and R. Lynch (U. Queensland); staff of the Keys Marine Laboratory (Long Key, FL, USA) and Heron Island Research Station (Heron Island, Queensland, Australia); and crews of the R/V Roger Revelle, R/V Walton Smith, and R/V Point Sur for assistance with sample collection. This work was supported by NSF grant MCB0084231 awarded to JAF and D. Caron, and is in partial completion of a PhD by I.H.


  1. 1.
    Avaniss-Aghajani, E, Jones, K, Chapman, D, Brunk, C 1994A molecular technique for identification of bacteria using small subunit ribosomal RNA sequencesBioTechniques17144149PubMedGoogle Scholar
  2. 2.
    Azam, F, Fenchel, T, Field, JG, Gray, JS, Meyer-Reil, LA, Thingstad, F 1983The ecological role of water-column microbes in the seaMar Ecol Prog Ser10257263Google Scholar
  3. 3.
    Borneman, J, Triplett, EW 1997Molecular microbial diversity in soils from eastern Amazonia: evidence for unusual microorganisms and microbial population shifts associated with deforestationAppl Environ Microbiol6326472653PubMedGoogle Scholar
  4. 4.
    Braker, G, Ayala-del-Río, HL, Devol, AH, Fesefeldt, A, Tiedje, JM 2001Community structure of dentrifiers, Bacteria, and Archaea along redox gradients in pacific northwest marine sediments by terminal restriction fragment length polymorphism analysis of amplified nitrite reductase (nirS) and 16S rRNA genesAppl Environ Microbiol6718931901CrossRefPubMedGoogle Scholar
  5. 5.
    Brown, MV, Schwalbach, MS, Hewson, I, Fuhrman, JA 2005Coupling 16S-ITS rDNA clone libraries and ARISA to show marine microbial diversity: development and application to a time seriesEnviron Microbiol714661479CrossRefPubMedGoogle Scholar
  6. 6.
    Crosby, LD, Criddle, CS 2003Understanding bias in microbial community analysis techniques due to rrn operon copy number heterogeneityBioTechniques34790802PubMedGoogle Scholar
  7. 7.
    Ducklow, HW 1983Production and fate of bacteria in the oceansBioscience33494501Google Scholar
  8. 8.
    Ducklow, HW, Carlson, CA 1992Oceanic bacterial productionAdv Microb Ecol12113181Google Scholar
  9. 9.
    Duineveld, BM, Kowalchuk, GA, Keijzer, A, Elsas, JD, Veen, JA 2001Analysis of bacterial communities in the rhizosphere of Chrysanthemum via denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA as well as DNA fragments coding for 16S rRNAAppl Environ Microbiol67172178CrossRefPubMedGoogle Scholar
  10. 10.
    Fisher, MM, Triplett, EW 1999Automated approach for ribosomal intergenic spacer analysis of microbial diversity and its application to freshwater bacterial communitiesAppl Environ Microbiol6546304836PubMedGoogle Scholar
  11. 11.
    Fuhrman, JA 1992Bacterioplankton roles in cycling of organic matter: the microbial food webFalkowski, PGWoodhead, AD eds. Primary Productivity and Biogeochemical Cycles in the SeaPlenum PressNew YorkGoogle Scholar
  12. 12.
    Fuhrman, JA 2002Community structure: Bacteria and ArchaeaHurst, CJCrawford, RLKnudsen, GRMcInerney, MJStetzenbach, LD eds. Manual of Environmental Microbiology2ASM PressWashington, D.C.Google Scholar
  13. 13.
    Fuhrman, JA, Comeau, DE, Hagstrom, A, Chan, AM 1988Extraction of DNA suitable for molecular biological studies from natural planktonic microorganismsAppl Environ Microbiol5414261429PubMedGoogle Scholar
  14. 14.
    Hewson, I, Fuhrman, JA 2004Bacterioplankton species richness and diversity along an estuarine gradient in Moreton Bay, AustraliaAppl Environ Microbiol7034253433CrossRefPubMedGoogle Scholar
  15. 15.
    Hewson, I, Vargo, GA, Fuhrman, JA 2003Bacterial diversity in shallow oligotrophic marine benthos and overlying waters: effects of virus infection, containment and nutrient enrichmentMicrob Ecol46322336PubMedGoogle Scholar
  16. 16.
    Hollibaugh, JT, Wong, PS, Murrell, MC 2000Similarity of particle-associated and free-living bacterial communities in northern San Francisco Bay, CaliforniaAquat Microb Ecol21103109Google Scholar
  17. 17.
    Jaccard, P 1912The distribution of flora in the alpine zoneNew Phytol113750Google Scholar
  18. 18.
    Kaplan, CW, Astaire, JC, Sanders, ME, Reddy, BS, Kitts, CL 200116S ribosomal DNA terminal restriction fragment pattern analysis of bacterial communities in feces of rats fed Lactobacillus acidophilus NCFMAppl Environ Microbiol6719351939CrossRefPubMedGoogle Scholar
  19. 19.
    Kaplan, CW, Kitts, CL 2004Bacterial succession in a petroleum land treatment unitAppl Environ Microbiol7017771786CrossRefPubMedGoogle Scholar
  20. 20.
    Kaplan, CW, Kitts, CL 2003Variation between observed and true Terminal Restriction Fragment length is dependent on true TRF length and purine contentJ Microbiol Methods54121125CrossRefPubMedGoogle Scholar
  21. 21.
    Klappenbach, JL, Dunbar, JM, Schmidt, TM 2000rRNA operon copy number reflects ecological strategies of bacteriaAppl Environ Microbiol6613281333CrossRefPubMedGoogle Scholar
  22. 22.
    le B Williams, PJ 1981Incorporation of microheterotrophic processes into the classical paradigm of the planktonic food webKiel Meeresforsch Sonderh5128Google Scholar
  23. 23.
    Moeseneder, MM, Winter, C, Herndl, GJ 2001Horizontal and vertical complexity of attached and free-living bacteria of the eastern Mediterranean Sea, determined by 16S rDNA and 16S rRNA fingerprintsLimnol Oceanogr4695107Google Scholar
  24. 24.
    Moschetti, G, Blaiotta, G, Villani, F, Coppola, S, Parente, E 2001Comparison of statistical methods for identification of Streptococcus thermophilus, Enterococcus faecalis and Enterococcus faecium from randomly amplified polymorphic DNA patternsAppl Environ Microbiol6721562166CrossRefPubMedGoogle Scholar
  25. 25.
    Muyzer, G, Waal, EC, Uitterlinden, AG 1993Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding of 16S rRNAAppl Environ Microbiol59695700PubMedGoogle Scholar
  26. 26.
    Polz, MF, Cavanaugh, CM 1998Bias in template-to-product ratios in multitemplate PCRAppl Environ Microbiol6437243730PubMedGoogle Scholar
  27. 27.
    Rees, GN, Baldwin, DS, Watson, GO, Perryman, S, Nielson, DL 2004Ordination and significance testing of microbial community composition derived from terminal restriction fragment length polymorphisms: application of multivariate statisticsAntonie van Leeuwenhoek86339347CrossRefPubMedGoogle Scholar
  28. 28.
    Scala, DJ, Kerkhof, LJ 2000Horizontal heterogeneity of denitrifying bacterial communities in marine sediments by terminal restriction fragment length polymorphism analysisAppl Environ Microbiol6619801986CrossRefPubMedGoogle Scholar
  29. 29.
    Schwalbach, MS, Hewson, I, Fuhrman, JA 2004Viral effects on bacterial community composition in marine plankton microcosmsAquat Microb Ecol34117127Google Scholar
  30. 30.
    Sokal, RR, Rohlf, FJ 1995Biometry, The Principles and Practice of Statistics in Biological Research, Vol. 3FreemanNew YorkGoogle Scholar
  31. 31.
    Stepanauskas, R, Moran, MA, Bergamaschi, BA, Hollibaugh, JT 2003Covariance of bacterioplankton composition and environmental variables in a temperate delta systemAquat Microb Ecol318598Google Scholar
  32. 32.
    Suzuki, MT, Giovannoni, SJ 1996Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCRAppl Environ Microbiol62625630PubMedGoogle Scholar
  33. 33.
    Suzuki, MT, Rappé, M, Giovannoni, SJ 1998Kinetic bias in estimates of picoplankton community structure obtained by measurements of small-subunit rRNA gene PCR amplicon length heterogeneityAppl Environ Microbiol6445224529PubMedGoogle Scholar
  34. 34.
    Suzuki, MT, Rappe, MS, Haimberger, ZW, Winfield, H, Adair, N, Stroebel, J, Giovannoni, SJ 1997Bacterial diversity among small-subunit rRNA gene clones and cellular isolates from the same seawater sampleAppl Environ Microbiol63983989PubMedGoogle Scholar
  35. 35.
    Swerdlow, H, Gesteland, R 1990Capillary gel electrophoresis for rapid, high resolution DNA sequencingNucleic Acids Res1814151419PubMedGoogle Scholar
  36. 36.
    Troussellier, M, Schafer, H, Batailler, N, Bernard, L, Courties, C, Lebaron, P, Muyzer, G, Servais, P, Vives-Rego, J 2002Bacterial activity and genetic richness along an estuarine gradient (Rhone River plume, France)Aquat Microb Ecol281324Google Scholar
  37. 37.
    Whittaker, RH 1952A study of summer foliage insect communities in the Great Smoky MountainsEcol Monogr22144Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Department of Biological SciencesUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Department of Ocean SciencesUniversity of California, Santa CruzSanta CruzUSA

Personalised recommendations