Microbial Ecology

, Volume 49, Issue 3, pp 425–433 | Cite as

High Heterotrophic Bacterial Production in Acidic, Iron-Rich Mining Lakes

  • N. KamjunkeEmail author
  • J. Tittel
  • H. Krumbeck
  • C. Beulker
  • J. Poerschmann


The acidic mining lakes of Eastern Germany are characterized by their extremely low pH and high iron concentrations. Low concentrations of CO2 in the epilimnion due to the low pH and reduced light transmission due to dissolved ferric iron potentially limit phytoplankton primary production (PP), whereas dissolved organic carbon (DOC) may promote heterotrophic production of bacteria (HP). We, therefore, tested whether HP exceeds PP in three lakes differing in pH and iron concentration (mean pH 2.3–3.0, 23–500 mg Fe L−1). Bacterial biomass and HP achieved highest values in the most acidic, most iron-rich lake, whereas PP was highest in the least acidic lake. HP was often higher than PP (ratio HP/PP up to 11), indicating that planktonic PP was not the main carbon source for the bacteria. HP was not related to PP and DOC, but HP as well as bacterial biomass increased with decreasing pH. Light stimulated the formation of ferrous iron, changed the DOC composition, and increased the HP in laboratory experiments, suggesting that iron photoreduction caused DOC degradation. This may explain why we found the highest HP in the most acidic and most rich lake. Overall, the importance of bacteria in the cycling of matter and as a basis for the whole food web seemed to increase in more acidic lakes with higher iron concentrations.


Photosynthetic Active Radiation Dissolve Organic Carbon Concentration Bacterial Biomass Acidic Lake Bacterial Growth Efficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Gabriele Dudda, Ines Hübner, Jörn Jander, Silvia Heim, and Lucienn Schneider for technical help, Antje Gerloff for support in primary production measurement, Götz Günter for pigment investigations, Katrin Wendt-Potthoff for data on chemolithotrophic bacteria, and Ursula Gaedke, Walter Geller, and Elanor Bell for constructive suggestions on the manuscript. This paper is based on research project no. 0339746 of the Federal Ministry of Education and Research (BMBF) of Germany.


  1. 1.
    Ahtiainen, M, Holopainen, A-L, Hovi, A 1985Phytoplankton, primary production and dark fixation in a polyhumic lake in eastern FinlandAqua Fennica157788Google Scholar
  2. 2.
    Arvola, L 1984Diel variation in primary production and the vertical distribution of phytoplankton in a polyhumic lakeArch Hydrobiol101503519Google Scholar
  3. 3.
    Bissinger, V, Jander, J, Tittel, J 2000A new medium free of organic carbon to cultivate organisms from extremely acidic minig lakes (pH 2.7)Acta Hydrochim Hydrobiol28310312Google Scholar
  4. 4.
    Bratbak, G, Dundas, I 1984Bacterial dry matter and biomass estimationsAppl Environ Microbiol48755757Google Scholar
  5. 5.
    Brinkmann, T, Hörsch, P, Sartorius, D, Frimmel, FH 2003Photoformation of low-molecular-weight organic acids from brown water dissoved organic matterEnviron Sci Technol3741904198Google Scholar
  6. 6.
    Cole, JJ, Likens, GE, Strayer, DL 1982Photosynthetically produced dissolved organic carbon: an important carbon source for planktonic bacteriaLimnol Oceanogr2710801090Google Scholar
  7. 7.
    Cole, JJ, Findlay, BJ, Pace, ML 1988Bacterial production in fresh and saltwater: a cross system overviewMar Ecol Prog Ser43110Google Scholar
  8. 8.
    Coveny, MF, Wetzel, RG 1995Biomass, production, and specific growth rate of bacterioplankton and coupling to phytoplankton in an oligotrophic lakeLimnol Oceanogr4011871200Google Scholar
  9. 9.
    Friese, K, Herzsprung, P, Witter, B 2002Photochemical degradation of organic carbon in acidic mining lakesActa Hydrochim Hydrobiol3018Google Scholar
  10. 10.
    Geller, W, Klapper, H, Salomons, W (1998Acidic Mining LakesSpringerBerlinGoogle Scholar
  11. 11.
    Graneli, W, Lindell, M, Tranvik, L 1996Photo-oxidative production of dissolved inorganic carbon in lakes of different humic contentLimnol Oceanogr41698706Google Scholar
  12. 12.
    Graneli, W, Lindell, M, Faria, BM, Esteves, FD 1998Photoproduction of dissolved inorganic carbon in temperate and tropical lakes—dependence on wavelength band and dissolved organic carbon concentrationBiogeochemistry43175195Google Scholar
  13. 13.
    Gyure, RA, Konopka, A, Brooks, A, Doemel, W 1987Algal and bacterial activities in acidic (pH 3) strip mine lakesAppl Environ Microbiol5320692076Google Scholar
  14. 14.
    Herzsprung, P, Friese, K, Packroff, G, Schimmele, M, Wendt-Potthoff, K, Winkler, M 1998Vertical and annual distribution of ferric and ferrous iron in acidic mining lakesActa Hydrochim Hydrobiol26253262Google Scholar
  15. 15.
    Hobbie, JE, Daley, RJ, Jasper, S 1977Use of nuclepore filters for counting bacteria by fluorescence microscopyAppl Environ Microbiol3312251228Google Scholar
  16. 16.
    Jansson, M, Bergström, A-K, Blomqvist, P, Drakare, S 2000Allochthonous organic carbon and phytoplankton/bacterioplankton production relationships in lakesEcology8132503255Google Scholar
  17. 17.
    Kamjunke, N, Böing, W, Voigt, H 1997Bacterial and primary production under hypertrophic conditionsAquat Microb Ecol132935Google Scholar
  18. 18.
    Karlsson, J, Jansson, M, Jonsson, A 2002Similar relationships between pelagic primary and bacterial production in clearwater and humic lakesEcology8329022910Google Scholar
  19. 19.
    Kieber, DJ, McDaniel, J, Mopper, K 1989Photochemical source of biological substrates in sea water: implications for carbon cyclingNature341637639Google Scholar
  20. 20.
    Kirchman, DL 2002Calculating microbial growth rates from data on production and standing stocksMar Ecol Prog Ser233303306Google Scholar
  21. 21.
    Kirchman, D, K’nees, E, Hodson, R 1985Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systemsAppl Environ Microbiol49599607Google Scholar
  22. 22.
    Kirchman, DL, Hoch, MP 1988Bacterial production in the Delaware Bay estuary estimated from thymidine and leucine incorporation ratesMar Ecol Prog Ser45169178Google Scholar
  23. 23.
    Koschorreck, M, Tittel, J 2002Benthic photosynthesis in an acidic mining lake (pH 2.6)Limnol Oceanogr4711971201Google Scholar
  24. 24.
    Krüger, B, Kadler, A, Fischer, M 2002The creation of post-mining landscapes of lignite mining in the new federal satesSurf Mining54161169Google Scholar
  25. 25.
    Lee, CW, Kudo, I, Yanada, M, Maita, Y 2001Bacterial abundance and production and heterotrophic nanoflagellate abundance in subarctic coastal waters (Western North Pacific Ocean)Aquat Microb Ecol23263271Google Scholar
  26. 26.
    Meier, J, Babenzien, D, Wendt-Potthoff, K 2004Microbial cycling of iron and sulfur in sediments of acidic and pH-neutral mining lakes in Lusatia (Brandenburg, Germany)Biogeochemistry67135156Google Scholar
  27. 27.
    Mitchell, BG 1990Algorithms for determining the absorption coefficient of aquatic particulates using the quantitative filter technique (QFT)Ocean Optics X SPIE1302137148Google Scholar
  28. 28.
    Nixdorf, B, Mischke, U, Lessmann, D 1998Chrysophytes and chlamydomonads: pioneer colonists in extremely acidic mining lakes (pH < 3) in Lusatia (Germany)Hydrobiologia369/370315327Google Scholar
  29. 29.
    Packroff, G 2000Protozooplankton in acidic mining lakes with respect to ciliatesHydrobiologia433157166Google Scholar
  30. 30.
    Pace, ML, Cole, JJ 1994Primary and bacterial production in lakes: are they coupled over depth?J Plankton Res16661672Google Scholar
  31. 31.
    Pomeroy, LR, Wiebe, WJ 2001Temperature and substrates as interactive limiting factors for marine heterotrophic bacteriaAquat Microb Ecol23187204Google Scholar
  32. 32.
    Poerschmann, J, Spijkerman, E, Langer, U 2004Fatty acid patterns in Chlamydomonas sp. as a marker for nutritional regimes and temperature under extremely acidic conditionsMicrob Ecol487879Google Scholar
  33. 33.
    Robarts, RD, Arts, MT, Evans, MS, Waiser, MJ 1994The coupling of heterotrophic bacterial and phytoplankton production in a hypertrophic, shallow prairie lakeCan J Fish Aquat Sci5122192226Google Scholar
  34. 34.
    Simon, M, Azam, F 1989Protein content and protein synthesis rates of planktonic bacteriaMar Ecol Prog Ser51201213Google Scholar
  35. 35.
    Tittel, J, Bissinger, V, Zippel, B, Gaedke, U, Bell, E, Lorke, A, Kamjunke, N 2003Mixotrophs combine resource use to out-compete specialists: implications for aquatic food websProc Natl Acad Sci USA1001277612781Google Scholar
  36. 36.
    Tremaine, SC, Mills, AL 1991Impact of water column acidification on protozoan bacterivory at the lake sediment-water interfaceAppl Environ Microbiol57775784Google Scholar
  37. 37.
    Vollenweider, RA (1969A Manual on Methods for Measuring Primary Production in Aquatic EnvironmentsBlackwellOxfordGoogle Scholar
  38. 38.
    Wendt-Potthoff, K, Koschorreck, M 1998Functional groups and activities of bacteria in a highly acidic volcanic mountain stream and lake in Patagonia, ArgentinaMicrob Ecol4392106Google Scholar
  39. 39.
    Wetzel, RG 2001LimnologyAcademic PressSan DiegoGoogle Scholar
  40. 40.
    Wetzel, RG, Hatcher, PG, Bianchi, TS 1995Natural photolysis by ultraviolet irradiance of recalcitrant dissolved organic matter to simple substrates for rapid bacterial metabolismLimnol Oceanogr4013691380Google Scholar
  41. 41.
    White, PA, Kalff, J, Rasmussen, JB, Gasol, JM 1991The effect of temperature and algal biomass on bacterial production and specific growth rate in freshwater and marine habitatsMicrob Ecol2199118Google Scholar
  42. 42.
    Zippel, B, Tittel, H, Tümpling, W,Jr 2001Sampling method for the determination of total inorganic carbon (TIC) in strongly acidic watersActa Hydrochim Hydrobiol29309312Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • N. Kamjunke
    • 1
    Email author
  • J. Tittel
    • 1
    • 2
  • H. Krumbeck
    • 3
  • C. Beulker
    • 3
  • J. Poerschmann
    • 4
  1. 1.Institute of Biochemistry and BiologyUniversity of PotsdamPotsdamGermany
  2. 2.Department of Lake ResearchUFZ-Centre for Environmental Research Leipzig-Halle GmbHMagdeburgGermany
  3. 3.Chair of Water Conservation, Research Station Bad SaarowBrandenburg University of Technology at CottbusBad SaarowGermany
  4. 4.Department of Environmental TechnologyCentre for Environmental Research Leipzig-Halle GmbH (UFZ)LeipzigGermany

Personalised recommendations