Microbial Ecology

, Volume 51, Issue 1, pp 22–35 | Cite as

Assessment of Nitrification Potential in Ground Water Using Short Term, Single-Well Injection Experiments

  • R. L. Smith
  • L. K. Baumgartner
  • D. N. Miller
  • D. A. Repert
  • J. K. Böhlke
Article

Abstract

Nitrification was measured within a sand and gravel aquifer on Cape Cod, MA, using a series of single-well injection tests. The aquifer contained a wastewater-derived contaminant plume, the core of which was anoxic and contained ammonium. The study was conducted near the downgradient end of the ammonium zone, which was characterized by inversely trending vertical gradients of oxygen (270 to 0 μM) and ammonium (19 to 625 μM) and appeared to be a potentially active zone for nitrification. The tests were conducted by injecting a tracer solution (ambient ground water + added constituents) into selected locations within the gradients using multilevel samplers. After injection, the tracers moved by natural ground water flow and were sampled with time from the injection port. Rates of nitrification were determined from changes in nitrate and nitrite concentration relative to bromide. Initial tests were conducted with 15N-enriched ammonium; subsequent tests examined the effect of adding ammonium, nitrite, or oxygen above background concentrations and of adding difluoromethane, a nitrification inhibitor. In situ net nitrate production exceeded net nitrite production by 3- to 6- fold and production rates of both decreased in the presence of difluoromethane. Nitrification rates were 0.02–0.28 μmol (L aquifer)−1 h−1 with in situ oxygen concentrations and up to 0.81 μmol (L aquifer)−1 h−1 with non-limiting substrate concentrations. Geochemical considerations indicate that the rates derived from single-well injection tests yielded overestimates of in situ rates, possibly because the injections promoted small-scale mixing within a transport-limited reaction zone. Nonetheless, these tests were useful for characterizing ground water nitrification in situ and for comparing potential rates of activity when the tracer cloud included non-limiting ammonium and oxygen concentrations.

References

  1. 1.
    Bales, RC, Li, S, Maquire, KM, Yahya, MT, Gerba, CP, Harvey, RW 1995Virus and bacteria transport in a sandy aquifer, Cape Cod, MAGround Water33653661CrossRefGoogle Scholar
  2. 2.
    Barbaro, JR, Barker, JF, Lemon, LA, Mayfield, CI 1992Biotransformation of BTEX under anaerobic, denitrifying conditions: field and laboratory observationsJ Contam Hydrol11245272Google Scholar
  3. 3.
    Barber, LB,II, Thurman, EM, Schroeder, MP, LeBlanc, DR 1988Long-term fate of organic micropollutants in sewage-contaminated groundwaterEnviron Sci Technol22205211CrossRefPubMedGoogle Scholar
  4. 4.
    Barcelona, MJ, Naymik, TG 1984Dynamics of a fertilizer contaminant plume in groundwaterEnviron Sci Technol18257261CrossRefGoogle Scholar
  5. 5.
    Bjerg, PL, Rugge, K, Pedersen, JK, Christensen, TH 1995Distribution of redox-sensitive groundwater quality parameters downgradient of a landfill (Grindsted, Denmark)Environ Sci Technol2913871394CrossRefGoogle Scholar
  6. 6.
    Böhlke, JK, Denver, JM 1995Combined use of groundwater dating, chemical, and isotopic analyses to resolve the history and fate of nitrate contamination in two agricultural watersheds, Atlantic coastal plain, MarylandWater Resour Res3123192339CrossRefGoogle Scholar
  7. 6A.
    Böhlke, JK, Smith, RL, Miller, DN (2006) Ammonium transport and reaction in a contaminated ground-water plume: Application of isotope, tracers and isotope fractionation studies. Water Resour Res (in press)Google Scholar
  8. 7.
    Brooks, MH, Smith, RL, Macalady, DL 1992Inhibition of existing denitrification enzyme activity by chloramphenicolAppl Environ Microbiol5817461753PubMedGoogle Scholar
  9. 8.
    Buss, SR, Herbert, AW, Morgan, P, Thornton, SF (2003) Review of ammonium attenuation in soil and groundwater. National Groundwater and Contaminated Land Center Report NC/02/49, pp 1–70Google Scholar
  10. 9.
    Ceazan, ML, Thurman, EM, Smith, RL 1989Retardation of ammonium and potassium transport through a contaminated sand and gravel aquifer: the role of cation exchangeEnviron Sci Technol2314021408CrossRefGoogle Scholar
  11. 10.
    Chapelle, FH 1993Ground-Water Microbiology and GeochemistryWileyNew York424Google Scholar
  12. 11.
    Christensen, TH, Kjeldsen, P, Bjerg, PL, Jensen, DL, Christensen, JB, Baun, A, Albrechtsen, H-J, Heron, G 2001Biogeochemistry of landfill leachate plumesAppl Geochem16659718CrossRefGoogle Scholar
  13. 12.
    Cozzarelli, IM, Suflita, JM, Ulrich, GA, Harris, SH, Scholl, MA, Schlottmann, JL, Christenson, S 2000Geochemical and microbiological methods for evaluating anaerobic processes in an aquifer contaminated by landfill leachateEnviron Sci Technol3440254033CrossRefGoogle Scholar
  14. 13.
    Dalsgaard, T, Thamdrup, B 2002Factors controlling anaerobic ammonium oxidation with nitrite in marine sedimentsAppl Environ Microbiol6838023808CrossRefPubMedGoogle Scholar
  15. 14.
    Delwiche, CC 1981

    The nitrogen cycle and nitrous oxide

    Delwiche, CC eds. Denitrification, Nitrification, and Atmospheric Nitrous OxideWileyNew York115
    Google Scholar
  16. 15.
    Denne, JE, Hathaway, LR, McCool, SP 1984Ammonium ion, humic materials, and trihalomethane potential in Northeastern Kansas ground watersGround Water22755763Google Scholar
  17. 16.
    DeSimone, LA, Howes, BL 1998Nitrogen transport and transformations in a shallow aquifer receiving wastewater discharge: a mass balance approachWater Resour Res34271285CrossRefGoogle Scholar
  18. 17.
    Erskine, AD 2000Transport of ammonium in aquifers: retardation and degradationQ J Eng Geol Hydrogeol33161170Google Scholar
  19. 18.
    Garabedian, SP, LeBlanc, DR, Gelhar, LW, Celia, MA 1991Large-scale natural gradient tracer test in sand and gravel, Cape Cod, Massachusetts: 2. Analysis of spatial moments for a nonreactive tracerWater Resour Res27911924CrossRefGoogle Scholar
  20. 19.
    Ghiorse, WC, Wilson, JT 1988Microbial ecology of the terrestrial subsurfaceAdv Appl Microbiol33107172PubMedGoogle Scholar
  21. 20.
    Haggerty, R, Schroth, MH, Istok, JD 1998Simplified method of “push–pull” test data analysis for determining in situ reaction rate coefficientsGround Water36314324CrossRefGoogle Scholar
  22. 21.
    Harvey, RW, Barber, LB,II 1992Associations of free-living bacteria and dissolved organic compounds in a plume of contaminated groundwaterJ Contam Hydrol991103Google Scholar
  23. 22.
    Harvey, RW, Garabedian, SP 1991Use of colloid filtration theory in modeling movement of bacteria through a contaminated sandy aquiferEnviron Sci Technol25178185CrossRefGoogle Scholar
  24. 23.
    Harvey, RW, George, LH 1987Growth determinations for unattached bacteria in a contaminated aquiferAppl Environ Microbiol5329922996PubMedGoogle Scholar
  25. 24.
    Harvey, RW, George, LH, Smith, RL, LeBlanc, DR 1989Transport of microspheres and indigenous bacteria through a sandy aquifer: results of natural- and forced-gradient tracer experimentsEnviron Sci Technol235156CrossRefGoogle Scholar
  26. 25.
    Harvey, RW, Kinner, NE, Bunn, A, MacDonald, D, Metge, D 1995Transport behavior of groundwater protozoa and protozoan-sized microspheres in sandy aquifer sedimentsAppl Environ Microbiol61209217PubMedGoogle Scholar
  27. 26.
    Hess, KM, Wolf, SH, Celia, MA 1992Large-scale natural gradient tracer test in sand and gravel, Cape Cod, Massachusetts: 3. Hydraulic conductivity variability and calculated macrodispersivitiesWater Resour Res2820112027CrossRefGoogle Scholar
  28. 27.
    Hiscock, KM, Bateman, AS, Muhlherr, IH, Fukada, T, Dennis, PF 2003Indirect emissions of nitrous oxide from regional aquifers in the United KingdomEnviron Sci Technol3735073512CrossRefPubMedGoogle Scholar
  29. 28.
    Istok, JD, Field, JA, Schroth, MH 2001In situ determination of subsurface microbial enzyme kineticsGround Water39348355CrossRefPubMedGoogle Scholar
  30. 29.
    Istok, JD, Humphrey, MD, Schroth, MH, Hyman, MR, O'Reilly, KT 1997Single-well, “push–pull” test for in situ determination of microbial activityGround Water35619631CrossRefGoogle Scholar
  31. 30.
    Istok, JD, Senko, JM, Krumholz, LR, Watson, D, Bogle, MA, Peacock, A 2004In situ bioreduction of technetium and uranium in a nitrate-contaminated aquiferEnviron Sci Technol38468475CrossRefPubMedGoogle Scholar
  32. 31.
    Kent, DB, Abrams, RH, Davis, JA, Coston, JA, LeBlanc, DR 2000Modeling the influence of variable pH on the transport of zinc in a contaminated aquifer using semiempirical surface complexation modelsWater Resour Res3634113425CrossRefGoogle Scholar
  33. 32.
    Kent, DB, Davis, JA, Anderson, LCD, Rea, BA, Waite, TD 1994Transport of chromium and selenium in the suboxic zone of a shallow aquifer: influence of redox and adsorption reactionsWater Resour Res3010991114CrossRefGoogle Scholar
  34. 33.
    Kim, Y, Istok, JD, Semprini, L 2004Push–pull tests for assessing in situ aerobic cometabolismGround Water42329337CrossRefPubMedGoogle Scholar
  35. 34.
    Kinner, NE, Harvey, RW, Blakeslee, K, Novarino, G, Meeker, LD 1998Size-selective predation on groundwater bacteria by nonoflagellates in an organic-contaminated aquiferAppl Environ Microbiol64618625PubMedGoogle Scholar
  36. 35.
    Kleikemper, J, Schroth, MH, Sigler, WV, Schmucki, M, Bernasconi, SM, Zeyer, J 2002Activity and diversity of sulfate-reducing bacteria in a petroleum hydrocarbon-contaminated aquiferAppl Environ Microbiol6815161523CrossRefPubMedGoogle Scholar
  37. 36.
    Krueger, CJ, Radakovich, KM, Sawyer, TE, Barber, LB, Smith, RL, Field, JA 1998Biodegradation of the surfactant linear alkylbenzenesulfonate in sewage-contaminated groundwater: a comparison of column experiments and field tracer testsEnviron Sci Technol3239543961Google Scholar
  38. 37.
    LeBlanc, DR 1984Sewage plume in a sand and gravel aquifer, Cape Cod, MassachusettsUS Geol Surv Water Supply Pap2218128Google Scholar
  39. 38.
    Maule, CP, Fonstad, TA 2000Impacts of cattle penning on groundwater quality beneath feedlotsCan Agric Eng428793Google Scholar
  40. 39.
    McMahon, PB, Böhlke, JK, Bruce, BW 1999Denitrification in marine shales in northeastern ColoradoWater Resour Res3516291642CrossRefGoogle Scholar
  41. 40.
    Metge, DW, Brooks, MH, Smith, RL, Harvey, RW 1993Effect of treated-sewage contamination upon bacterial energy charge, adenine nucleotides, and DNA content in a sandy aquifer on Cape CodAppl Environ Microbiol5923042310PubMedGoogle Scholar
  42. 41.
    Miller, DN, Smith, RL, Böhlke, JK (1999) Nitrification in a shallow, nitrogen-contaminated aquifer, Cape Cod, Massachusetts. In: Morganwalp, DW, Buxton, HT (Eds.) U.S. Geological Survey Toxic Substances Hydrology Program–Proceedings of the Technical Meeting, Charleston, South Carolina, March 8–12, 1999, Volume 3 of 3, Subsurface Contamination from Point Sources: U.S. Geological Survey Water-Resources Investigations Report 99-4018C, pp 329–335Google Scholar
  43. 42.
    Miller, LG, Sasson, C, Oremland, RS 1998Difluoromethane, a new and improved inhibitor of methanotrophyAppl Environ Microbiol6443574362PubMedGoogle Scholar
  44. 43.
    Nolan, BT, Ruddy, BC, Hitt, KJ, Helsel, DR 1997Risk of nitrate in groundwaters of the United States—a national perspectiveEnviron Sci Technol3122292236CrossRefGoogle Scholar
  45. 44.
    North, NN, Dollhopf, SL, Petrie, L, Istok, JD, Balkwill, DL, Kostka, JE 2004Change in bacterial community structure during in situ biostimulation of subsurface sediment cocontaminated with uranium and nitrateAppl Environ Microbiol7049114920CrossRefPubMedGoogle Scholar
  46. 45.
    Novarino, G, Warren, A, Kinner, NE, Harvey, RW 1994Protists from a sewage-contaminated aquifer on Cape Cod, Massachusetts, USAGeomicrobiol J122336CrossRefGoogle Scholar
  47. 46.
    Phelps, TJ, Fredrickson, JK 2002

    Drilling, coring, and sampling subsurface environments

    Hurst, CJ eds. Manual of Environmental MicrobiologyASM PressWashington, DC679695
    Google Scholar
  48. 47.
    Pieper, AP, Ryan, JN, Harvey, RW, Amy, GL, Illangasekare, TH, Metge, DW 1997Transport and recovery of bacteriophage PRD1 in a sand and gravel aquifer: effect of sewage-derived organic matterEnviron Sci Technol3111631170CrossRefGoogle Scholar
  49. 48.
    Robertson, WD, Blowes, DW 1995Major ion and trace metal geochemistry of an acidic septic-system plume in siltGround Water33275283Google Scholar
  50. 49.
    Robertson, WD, Cherry, JA, Sudicky, EA 1991Ground-water contamination from two small septic systems on sand aquifersGround Water298292CrossRefGoogle Scholar
  51. 50.
    Ryan, JN, Elimelech, M, Ard, RA, Harvey, RW, Johnson, PR 1999Bacteriophage PRD1 and silica colloid transport and recovery in an iron oxide-coated sand aquiferEnviron Sci Technol336373CrossRefGoogle Scholar
  52. 51.
    Schilling, KE 2002Occurrence and distribution of ammonium in Iowa groundwaterWater Environ Res74177186PubMedGoogle Scholar
  53. 52.
    Schroth, MH, Istok, JD, Conner, GT, Hyman, MR, Haggerty, R, O'Reilly, KT 1998Spatial variability in in situ aerobic respiration and denitrification rates in a petroleum-contaminated aquiferGround Water36924937CrossRefGoogle Scholar
  54. 53.
    Schroth, MH, Kleikemper, J, Bolliger, C, Bernasconi, SM, Zeyer, J 2001In situ assessment of microbial sulfate reduction in a petroleum-contaminated aquifer using push–pull tests and stable sulfur isotope analysesJ Contam Hydrol51179195PubMedGoogle Scholar
  55. 54.
    Senko, JM, Istok, JD, Suflita, JM, Krumholz, LR 2002In-situ evidence for uranium immobilization and remobilizationEnviron Sci Technol3614911496CrossRefPubMedGoogle Scholar
  56. 55.
    Sheibley, RW, Duff, JH, Jackman, AP, Triska, FJ 2003Inorganic nitrogen transformations in the bed of the Shingobee River, Minnesota: integrating hydrologic and biological processes usingsediment perfusion coresLimnol Oceanogr4811291140CrossRefGoogle Scholar
  57. 56.
    Smith, RL, Böhlke, JK, Garabedian, SP, Revesz, KM, Yoshinari, T (2004) Assessing denitrification in groundwater using natural gradient tracer tests with 15N: in situ measurement of a sequential multistep reaction. Water Resour Res 40:W07101. doi: 10.1029/2003WR002919Google Scholar
  58. 57.
    Smith, RL, Böhlke, JK, Revesz, KM, Yoshinari, T, Hatzinger, PB, Penarrieta, CT, Repert, DA (1999) In situ assessment of the transport and microbial consumption of oxygen in ground water, Cape Cod, Massachusetts. In: Morganwalp, DW, Buxton, HT (Eds.) U.S. Geological Survey Toxic Substances Hydrology Program–Proceedings of the Technical Meeting, Charleston, SC, March 8–12, 1999 Volume 3 of 3, Subsurface Contamination from Point Sources: U.S. Geological Survey Water-Resources Investigations Report 99-4018C, pp 317–322Google Scholar
  59. 58.
    Smith, RL, Duff, JH 1988Denitrification in a sand and gravel aquiferAppl Environ Microbiol5410711078PubMedGoogle Scholar
  60. 59.
    Smith, RL, Garabedian, SP, Brooks, MH 1996Comparison of denitrification activity measurements in groundwater using cores and natural-gradient tracer testsEnviron Sci Technol3034483456Google Scholar
  61. 60.
    Smith, RL, Harvey, RW, LeBlanc, DR 1991Importance of closely spaced vertical sampling in delineating chemical and microbiological gradients in groundwater studiesJ Contam Hydrol7285300Google Scholar
  62. 61.
    Smith, RL, Howes, BL, Duff, JH 1991Denitrification in nitrate-contaminated groundwater: occurrence in steep vertical geochemical gradientsGeochim Cosmochim Acta5518151825Google Scholar
  63. 62.
    Smith, RL, Howes, BL, Garabedian, SP 1991In situ measurement of methane oxidation in groundwater by using natural-gradient tracer testsAppl Environ Microbiol5719972004PubMedGoogle Scholar
  64. 63.
    Smith, RL, Miller, DN, Brooks, MH, Widdowson, MA, Killingstad, MW 2001In situ stimulation of groundwater denitrification with formate to remediate nitrate contaminationEnviron Sci Technol35196203PubMedGoogle Scholar
  65. 64.
    Smith, RL, Rea Kumler, BA, Peacock, TR, Miller, DN (1999) Evolution of a ground-water sewage plume after removal of the 60-year-long source, Cape Cod, Massachusetts: Inorganic nitrogen species. In: Morganwalp, DW, Buxton, HT (Eds.) U.S. Geological Survey Toxic Substances Hydrology Program–Proceedings of the Technical Meeting, Charleston, SC, March 8–12, 1999, Volume 3 of 3, Subsurface Contamination from Point Sources: U.S. Geological Survey Water-Resources Investigations Report 99-4018C, pp 285–291Google Scholar
  66. 65.
    Snodgrass, MF, Kitanidis, PK 1998A method to in0fer in situ reaction rates from push–pull experimentsGround Water36645650CrossRefGoogle Scholar
  67. 66.
    Spalding, RF, Exner, ME 1991

    Nitrate contamination in the contiguous United States

    Bogardi, IKuzelka, RD eds. Nitrate Contamination, Exposure, Consequence and ControlSpringer-VerlagNew York1348
    Google Scholar
  68. 67.
    Strauss, EA, Dodds, WK 1997Influence of protozoa and nutrient availability on nitrification rates in subsurface sedimentsMicrob Ecol34155165CrossRefPubMedGoogle Scholar
  69. 68.
    Thamdrup, B, Dalsgaard, T 2000The fate of ammonium in anoxic manganese oxide-rich marine sedimentGeochim Cosmochim Acta6441574164CrossRefGoogle Scholar
  70. 69.
    Thamdrup, B, Dalsgaard, T 2002Production of N2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sedimentsAppl Environ Microbiol6813121318CrossRefPubMedGoogle Scholar
  71. 70.
    Thurman, EM, Barber, LB,II, LeBlanc, DR 1986Movement and fate of detergents in groundwater: a field studyJ Contam Hydrol1143161Google Scholar
  72. 71.
    Trimmer, M, Nicholls, JC, Deflandre, B 2003Anaerobic ammonium oxidation measured in sediments along the Thames Estuary, United KingdomAppl Environ Microbiol6964476454CrossRefPubMedGoogle Scholar
  73. 72.
    Velinsky, DJ, Pennock, JR, Sharp, JH, Cifuentes, LA, Fogel, ML 1989Determination of the isotopic composition of ammonium–nitrogen at the natural abundance level from estuarine watersMar Chem26351361CrossRefGoogle Scholar
  74. 73.
    Whitelaw, K, Rees, JF 1980Nitrate-reducing and ammonium-oxidizing bacteria in the vadose zone of the Chalk Aquifer of EnglandGeomicrobiol J2179187Google Scholar
  75. 74.
    Wood, WW, Kraemer, TF, Hearn, PP,Jr 1990Intragranular diffusion: an important mechanism influencing solute transport in clastic aquifers?Science24715691572PubMedGoogle Scholar
  76. 75.
    Zakutin, VP, Chugunova, NN, Fetisenko, DA, Panteleeva, ZN, Bogomolova, AA 1995Ammonium-containing groundwater: generation and occurrence conditionsWater Resour22675686Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • R. L. Smith
    • 1
  • L. K. Baumgartner
    • 1
    • 3
  • D. N. Miller
    • 1
    • 4
  • D. A. Repert
    • 1
  • J. K. Böhlke
    • 2
  1. 1.U.S. Geological SurveyBoulderUSA
  2. 2.U.S. Geological SurveyRestonUSA
  3. 3.Department of Marine SciencesUniversity of ConnecticutGrotonUSA
  4. 4.USDA, ARS, 121 Kein Hall, East CampusUniversity of NebraskaLincolnUSA

Personalised recommendations