Microbial Ecology

, Volume 50, Issue 1, pp 110–119

Numerical and Genetic Analysis of Polycyclic Aromatic Hydrocarbon-Degrading Mycobacteria

  • Yong-Hak Kim
  • Karl-H. Engesser
  • Carl E. Cerniglia
Article

Abstract

Ability to degrade high molecular weight polycyclic aromatic hydrocarbons (PAHs) has been found in diverse species of fast-growing mycobacteria. This study included several PAH-degrading mycobacteria from heavily contaminated sites and an uncontaminated humus soil in the Natural Park, Schwäbische Alb, Germany. The numerical analysis with a total of 131 tests showed that isolates from humus soil and contaminated sites had similar substrate utilization patterns for primary alcohols from ethanol to pentanol, 1,4-butanediol, benzyl alcohol, hexadecane, ethyl acetate, fluoranthene, phenanthrene, and pyrene as the sole carbon and energy (C/E) sources. Significant differences between the two subgroups isolated from humus soil and contaminated sites were observed in the utilization of polyalcoholic sugars, including adonitol, D-arabitol, L-arabitol, erythritol, inositol, rhamnose, sorbitol, and xylitol. Among isolates from humus soil, strain PYR100 showed high similarity in 16S rDNA sequence with M. vanbaalenii strain PYR-1 (=DSM 7251, 100%) and M. austroafricanum ATCC 33464 (99.9%). In addition to the numerical analysis, the 16S–23S intergenic spacer sequence was useful for discriminating between the closely related strains PYR100 and PYR-1 (98% similarity). The patterns of the variable V2 and V3 regions in the ribosomal RNA gene corresponding to Escherichia coli positions 179 to 197 and 1006 to 1023, respectively, were useful for dividing fast-growing and thermosensitive PAH-degrading mycobacteria into ten subgroups consistent with the phylogenetic positions.

References

  1. 1.
    Bastiaens L, Springael D, Wattiau P, Harms H, deWachter R, Verachtert H, Diels L (2000) Isolation of adherent polycyclic aromatic hydrocarbon (PAH)-degrading bacteria using PAH-sorbing carriers. Appl Environ Microbiol 66:1834–1843CrossRefPubMedGoogle Scholar
  2. 2.
    Boldrin B, Tiehm A, Fritsche C (1993) Degradation of phenanthrene, fluorene, fluoranthene, and pyrene by Mycobacterium sp. Appl Environ Microbiol 59:1927–1930PubMedGoogle Scholar
  3. 3.
    Cheung PY, Kinkle BK (2001) Mycobacterium diversity and pyrene mineralization in petroleum-contaminated soils. Appl Environ Microbiol 67:2222–2229CrossRefPubMedGoogle Scholar
  4. 4.
    Churchill SA, Harper JP, Churchill PF (1999) Isolation and characterization of a Mycobacterium species capable of degrading three- and four-ring aromatic and aliphatic hydrocarbons. Appl Environ Microbiol 65:549–552PubMedGoogle Scholar
  5. 5.
    Collins CH, Lyne PM (1984) Microbiological Methods. Butterworths, LondonGoogle Scholar
  6. 6.
    Dandie CE, Thomas SM, Bentham RH, McClure NC (2004) Physiological characterization of Mycobacterium sp. strain 1B isolated from a bacterial culture able to degrade high-molecular-weight polycyclic aromatic hydrocarbons. J Appl Microbiol 97:246–255CrossRefPubMedGoogle Scholar
  7. 7.
    Dean-Ross D, Cerniglia CE (1996) Degradation of pyrene by Mycobacterium flavescens. Appl Microbiol Biotechnol 46:307–312CrossRefPubMedGoogle Scholar
  8. 8.
    De Soete G (1983) A least-square algorithm for fitting additive trees to proximity data. Psychometrika 48:621–626Google Scholar
  9. 9.
    Felsenstein J (1989) PHYLIP—Phylogeny Inference Package (Version 3.2). Cladistics 5:164–166Google Scholar
  10. 10.
    Fritzsche C (1994) Degradation of pyrene at low defined oxygen concentrations by a Mycobacterium sp. Appl Environ Microbiol 60:1687–1689PubMedGoogle Scholar
  11. 11.
    Gerhardt P, Murray RGB, Costilow RN, Nester EW, Wood WA, Krieg NR, Phillips GB (1984) Manual of methods for general bacteriology. American Society for Microbiology, Washington, DCGoogle Scholar
  12. 12.
    Govindaswami M, Feldhake DJ, Kinkle BK, Mindell DP, Loper JC (1995) Phylogenetic comparison of two polycyclic aromatic hydrocarbon-degrading mycobacteria. Appl Environ Microbiol 61:3221–3226PubMedGoogle Scholar
  13. 13.
    Grosser RJ, Warshawsky D, Vestal JB (1991) Indigenous and enhanced mineralization of pyrene, benzo[a]pyrene, and carbazole in soils. Appl Environ Microbiol 57:3462–3469PubMedGoogle Scholar
  14. 14.
    Häggblom MM, Nohynek LJ, Palleroni NJ, Kronquist K, Nurmiaho-Lassila EL, Salkinoja-Salonen MS, Klatte S, Kroppenstedt R (1994) Transfer of polychlorophenol-degrading Rhodococcus chlorophenolicum (Apajalahti et al., 1986) to the genus Mycobacterium as Mycobacterium chlorophenolicum comb. nov. Int J Syst Bacteriol 44:485–493Google Scholar
  15. 15.
    Harmsen, D, Dostel, S, Andreas, R, Niemann, S, Rothgänger, J, Sammeth, M, Albert, J, Frosch, M, Richter, E (2003) RIDOM: Comprehensive and public sequence database for identification of Mycobacterium species. BMC Infect Dis 3: 26 [http://WWW document] URL http://www.biomedcentral.com/1471-2334/3/26 CrossRefPubMedGoogle Scholar
  16. 16.
    Hartmans S, deBont JAM (1992) Aerobic vinyl chloride metabolism in Mycobacterium aurum LI. Appl Environ Microbiol 58:1220–1226PubMedGoogle Scholar
  17. 17.
    Heitkamp MA, Cerniglia CE (1988) Mineralization of polycyclic aromatic hydrocarbons by a bacterium isolated from sediment below an oil field. Appl Environ Microbiol 54:1612–1614PubMedGoogle Scholar
  18. 18.
    Heitkamp MA, Cerniglia CE (1989) Polycyclic aromatic hydrocarbon degradation by a Mycobacterium sp. in microcosms containing sediment and water from a pristine ecosystem. Appl Environ Microbiol 55:1968–1973PubMedGoogle Scholar
  19. 19.
    Karlson U, Dwyer DF, Hooper SW, Moore ERB, Timmis KN, Eltis LD (1993) Two independently regulated cytochromes P-450 in a Rhodococcus rhodochrous strain that degrades 2-ethoxyphenol and 4-methoxybenzoate. J Bacteriol 175:1467–1474PubMedGoogle Scholar
  20. 20.
    Kelley I, Freeman JP, Cerniglia CE (1990) Identification of metabolites from degradation of naphthalene by a Mycobacterium sp. Biodegradation 1:283–290CrossRefPubMedGoogle Scholar
  21. 21.
    Kelley I, Freeman JP, Evans FE, Cerniglia CE (1993) Identification of metabolites from the degradation of fluoranthene by Mycobacterium sp. strain PYR-1. Appl Environ Microbiol 59:800–806PubMedGoogle Scholar
  22. 22.
    Khan AA, Kim SJ, Paine DD, Cerniglia CE (2002) Classification of a polycyclic aromatic hydrocarbon-metabolizing bacterium, Mycobacterium sp. strain PYR-1, as Mycobacterium vanbaalenii sp. nov. Int J Syst Evol Microbiol 52:1997–2002CrossRefPubMedGoogle Scholar
  23. 23.
    Kim YH (1999) Dissertation (German thesis), Universitat Stuttgart, GermanyGoogle Scholar
  24. 24.
    Kim YH, Engesser KH, Cerniglia CE (2003) Two polycyclic aromatic hydrocarbon o-quinone reductases from a pyrene-degrading Mycobacterium. Arch Biochem Biophys 416:209–217CrossRefPubMedGoogle Scholar
  25. 25.
    Kim, YH, Moody, JD, Freeman, JP, Brezna, B, Engesser, KH, Cerniglia, CE (2004) Evidence for the existence of PAH-quinone reductases and catechol-O-methyltransferase in Mycobacterium vanbaalenii PYR-1. J Ind Microbiol Biotechnol 31: 507–516CrossRefPubMedGoogle Scholar
  26. 26.
    Kleespies M, Kroppenstedt RM, Rainey FA, Webb LE, Stackebrandt E (1996) Mycobacterium hodleri sp. nov., a new member of the fast-growing Mycobacteria capable of degrading polycyclic aromatic hydrocarbons. Int J Syst Bacteriol 46:683–687PubMedGoogle Scholar
  27. 27.
    Lang E, Kroppenstedt RM, Swiderski J, Schumann P, Ludwig W, Schmid A, Weiss N (2003) Emended description of Janibacter terrae, including ten dibenzofuran-degrading strains and Janibacter brevis as its later heterotypic synonym. Int J Syst Evol Microbiol 53:1999–2005CrossRefPubMedGoogle Scholar
  28. 28.
    Link CD, Reiner AM (1983) Genotypic exclusion: a novel relationship between the ribitol-arabitol and galactitol genes of E. coli. Mol Gen Genet 189:337–339CrossRefPubMedGoogle Scholar
  29. 29.
    Lloyd-Jones G, Hunter DWF (1997) Characterization of fluoranthene- and pyrene-degrading Mycobacterium-like strains by RAPD and SSU sequencing. FEMS Microbiol Lett 153:51–56CrossRefPubMedGoogle Scholar
  30. 30.
    Maidak BL, Olsen GJ, Larsen N, Overbeek R, McCaughey MJ, Woese CR (1994) The Ribosomal Database Project (RDP). Nucleic Acids Res 24:82–85CrossRefGoogle Scholar
  31. 31.
    Miller, CD, Hall, K, Liang, YN, Nieman, K, Sorensen, D, Issa, B, Anderson, AJ, Sims, RC (2004) Isolation and characterization of polycyclic aromatic hydrocarbon-degrading Mycobacterium isolates from soil. Microb Ecol 48: 230–238CrossRefPubMedGoogle Scholar
  32. 32.
    Molina M, Araujo R, Hodson RR (1999) Cross-induction of pyrene and phenanthrene in a Mycobacterium sp. isolated from polycyclic aromatic hydrocarbon contaminated river sediments. Can J Microbiol 45:520–529PubMedGoogle Scholar
  33. 33.
    Moody JD, Freeman JP, Doerge DR, Cerniglia CE (2001) Degradation of phenanthrene and anthracene by cell suspensions of Mycobacterium sp. strain PYR-1. Appl Environ Microbiol 67:1476–1483Google Scholar
  34. 34.
    Moody JD, Doerge DR, Freeman JP, Cerniglia CE (2002) Degradation of biphenyl by Mycobacterium sp. strain PYR-1. Appl Microbiol Biotechnol 58:364–369Google Scholar
  35. 35.
    Moody JD, Freeman JP, Fu PP, Cerniglia CE (2004) Degradation of benzo [a] pyrene by Mycobacterium vanbaalenii PYR-1. Appl Environ Microbiol 70:340–345Google Scholar
  36. 36.
    Rehmann K, Noll HP, Steinberg CEW, Kettrup AA (1998) Pyrene degradation by Mycobacterium sp. strain KR2. Chemosphere 36:2977–2992Google Scholar
  37. 37.
    Ridell M, Goodfellow M (1983) Numerical classification of Mycobacterium farcinogenes, Mycobacterium senegalense and related taxa. J Gen Microbiol 129:599–611Google Scholar
  38. 38.
    Saito H, Gordon RE, Juhlin I, Kappler W, Kwapinski JBG, McDurmont C, Pattyn SR, Runyon E, Stanford JL, Tarnok I, Tasaka H, Tsukamura M, Weiszfeiler I (1977) Cooperative numerical analysis of rapidly growing mycobacteria. Int J Syst Bacteriol 27:75–85Google Scholar
  39. 39.
    Schneider J, Grosser R, Jayasimhulu K, Xue W, Warshawsky D (1996) Degradation of pyrene, benzo[a]anthacene, benzo [a] pyrene by Mycobacterium sp. strain RJGII-135, isolated from a former coal gasification site. Appl Environ Microbiol 62:13–19Google Scholar
  40. 40.
    Stahl DA, Urbance JW (1990) The division between fast- and slow-growing species corresponds to natural relationships among the mycobacteria. J Bacteriol 172:116–124PubMedGoogle Scholar
  41. 41.
    Thomson JD, Higgins DG, Gibson TJ (1994) CLUSTALW: Improving the sensitivity of progressive multiple alignment through sequence weighting, position specific gap penalties, and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedGoogle Scholar
  42. 42.
    Tiehm A (1994) Degradation of polycyclic aromatic hydrocarbons in the presence of synthetic surfactants. Appl Environ Microbiol 60:258–263PubMedGoogle Scholar
  43. 43.
    Tsukamura M, Ichiyama S (1986) Numerical classification of rapidly growing nonphotochromogenic mycobacteria. Microbiol Immunol 30:863–882PubMedGoogle Scholar
  44. 44.
    Wang RF, Cao WW, Cerniglia CE (1995) Phylogenetic analysis of polycyclic aromatic hydrocarbon degrading mycobacteria by 16S rRNA sequencing. FEMS Microbiol Lett 130:75–80CrossRefPubMedGoogle Scholar
  45. 45.
    Willumsen P, Karlson U, Stackebrandt E, Kroppenstedt RM (2001) Mycobacterium frederiksbergense sp. nov., a novel polycyclic aromatic hydrocarbon-degrading Mycobacterium species. Int J Syst Evol Microbiol 51:1715–1722PubMedGoogle Scholar
  46. 46.
    Wilson K (1987) Preparation of genomic DNA from bacteria. In: Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds) Current protocols in molecular biology. John Wiley & Sons, Inc., New York, pp. 2.4.1–2.4.2Google Scholar
  47. 47.
    Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271PubMedGoogle Scholar
  48. 48.
    Woodward MJ, Charles HP (1983) Polymorphism in Escherichia coli: rtl atl and gat regions behave as chromosomal alternatives. J Gen Microbiol 129:75–84PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Yong-Hak Kim
    • 1
  • Karl-H. Engesser
    • 2
  • Carl E. Cerniglia
    • 1
  1. 1.Division of MicrobiologyNational Center for Toxicological Research, US Food and Drug AdministrationJefferson
  2. 2.Abteilung Biologische Abluftreinigung, Institut für Siedlungswasserbau, Wassergüteund Abfallwirtschaft (ISWA)Universität StuttgartStuttgartGermany
  3. 3.School of Biological SciencesSeoul National UniversityKwanak-kuRepublic of Korea

Personalised recommendations