Skip to main content
Log in

Numerical and Genetic Analysis of Polycyclic Aromatic Hydrocarbon-Degrading Mycobacteria

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Ability to degrade high molecular weight polycyclic aromatic hydrocarbons (PAHs) has been found in diverse species of fast-growing mycobacteria. This study included several PAH-degrading mycobacteria from heavily contaminated sites and an uncontaminated humus soil in the Natural Park, Schwäbische Alb, Germany. The numerical analysis with a total of 131 tests showed that isolates from humus soil and contaminated sites had similar substrate utilization patterns for primary alcohols from ethanol to pentanol, 1,4-butanediol, benzyl alcohol, hexadecane, ethyl acetate, fluoranthene, phenanthrene, and pyrene as the sole carbon and energy (C/E) sources. Significant differences between the two subgroups isolated from humus soil and contaminated sites were observed in the utilization of polyalcoholic sugars, including adonitol, D-arabitol, L-arabitol, erythritol, inositol, rhamnose, sorbitol, and xylitol. Among isolates from humus soil, strain PYR100 showed high similarity in 16S rDNA sequence with M. vanbaalenii strain PYR-1 (=DSM 7251, 100%) and M. austroafricanum ATCC 33464 (99.9%). In addition to the numerical analysis, the 16S–23S intergenic spacer sequence was useful for discriminating between the closely related strains PYR100 and PYR-1 (98% similarity). The patterns of the variable V2 and V3 regions in the ribosomal RNA gene corresponding to Escherichia coli positions 179 to 197 and 1006 to 1023, respectively, were useful for dividing fast-growing and thermosensitive PAH-degrading mycobacteria into ten subgroups consistent with the phylogenetic positions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Bastiaens L, Springael D, Wattiau P, Harms H, deWachter R, Verachtert H, Diels L (2000) Isolation of adherent polycyclic aromatic hydrocarbon (PAH)-degrading bacteria using PAH-sorbing carriers. Appl Environ Microbiol 66:1834–1843

    Article  PubMed  Google Scholar 

  2. Boldrin B, Tiehm A, Fritsche C (1993) Degradation of phenanthrene, fluorene, fluoranthene, and pyrene by Mycobacterium sp. Appl Environ Microbiol 59:1927–1930

    PubMed  Google Scholar 

  3. Cheung PY, Kinkle BK (2001) Mycobacterium diversity and pyrene mineralization in petroleum-contaminated soils. Appl Environ Microbiol 67:2222–2229

    Article  PubMed  Google Scholar 

  4. Churchill SA, Harper JP, Churchill PF (1999) Isolation and characterization of a Mycobacterium species capable of degrading three- and four-ring aromatic and aliphatic hydrocarbons. Appl Environ Microbiol 65:549–552

    PubMed  Google Scholar 

  5. Collins CH, Lyne PM (1984) Microbiological Methods. Butterworths, London

    Google Scholar 

  6. Dandie CE, Thomas SM, Bentham RH, McClure NC (2004) Physiological characterization of Mycobacterium sp. strain 1B isolated from a bacterial culture able to degrade high-molecular-weight polycyclic aromatic hydrocarbons. J Appl Microbiol 97:246–255

    Article  PubMed  Google Scholar 

  7. Dean-Ross D, Cerniglia CE (1996) Degradation of pyrene by Mycobacterium flavescens. Appl Microbiol Biotechnol 46:307–312

    Article  PubMed  Google Scholar 

  8. De Soete G (1983) A least-square algorithm for fitting additive trees to proximity data. Psychometrika 48:621–626

    Google Scholar 

  9. Felsenstein J (1989) PHYLIP—Phylogeny Inference Package (Version 3.2). Cladistics 5:164–166

    Google Scholar 

  10. Fritzsche C (1994) Degradation of pyrene at low defined oxygen concentrations by a Mycobacterium sp. Appl Environ Microbiol 60:1687–1689

    PubMed  Google Scholar 

  11. Gerhardt P, Murray RGB, Costilow RN, Nester EW, Wood WA, Krieg NR, Phillips GB (1984) Manual of methods for general bacteriology. American Society for Microbiology, Washington, DC

    Google Scholar 

  12. Govindaswami M, Feldhake DJ, Kinkle BK, Mindell DP, Loper JC (1995) Phylogenetic comparison of two polycyclic aromatic hydrocarbon-degrading mycobacteria. Appl Environ Microbiol 61:3221–3226

    PubMed  Google Scholar 

  13. Grosser RJ, Warshawsky D, Vestal JB (1991) Indigenous and enhanced mineralization of pyrene, benzo[a]pyrene, and carbazole in soils. Appl Environ Microbiol 57:3462–3469

    PubMed  Google Scholar 

  14. Häggblom MM, Nohynek LJ, Palleroni NJ, Kronquist K, Nurmiaho-Lassila EL, Salkinoja-Salonen MS, Klatte S, Kroppenstedt R (1994) Transfer of polychlorophenol-degrading Rhodococcus chlorophenolicum (Apajalahti et al., 1986) to the genus Mycobacterium as Mycobacterium chlorophenolicum comb. nov. Int J Syst Bacteriol 44:485–493

    Google Scholar 

  15. Harmsen, D, Dostel, S, Andreas, R, Niemann, S, Rothgänger, J, Sammeth, M, Albert, J, Frosch, M, Richter, E (2003) RIDOM: Comprehensive and public sequence database for identification of Mycobacterium species. BMC Infect Dis 3: 26 [http://WWW document] URL http://www.biomedcentral.com/1471-2334/3/26

    Article  PubMed  Google Scholar 

  16. Hartmans S, deBont JAM (1992) Aerobic vinyl chloride metabolism in Mycobacterium aurum LI. Appl Environ Microbiol 58:1220–1226

    PubMed  Google Scholar 

  17. Heitkamp MA, Cerniglia CE (1988) Mineralization of polycyclic aromatic hydrocarbons by a bacterium isolated from sediment below an oil field. Appl Environ Microbiol 54:1612–1614

    PubMed  Google Scholar 

  18. Heitkamp MA, Cerniglia CE (1989) Polycyclic aromatic hydrocarbon degradation by a Mycobacterium sp. in microcosms containing sediment and water from a pristine ecosystem. Appl Environ Microbiol 55:1968–1973

    PubMed  Google Scholar 

  19. Karlson U, Dwyer DF, Hooper SW, Moore ERB, Timmis KN, Eltis LD (1993) Two independently regulated cytochromes P-450 in a Rhodococcus rhodochrous strain that degrades 2-ethoxyphenol and 4-methoxybenzoate. J Bacteriol 175:1467–1474

    PubMed  Google Scholar 

  20. Kelley I, Freeman JP, Cerniglia CE (1990) Identification of metabolites from degradation of naphthalene by a Mycobacterium sp. Biodegradation 1:283–290

    Article  PubMed  Google Scholar 

  21. Kelley I, Freeman JP, Evans FE, Cerniglia CE (1993) Identification of metabolites from the degradation of fluoranthene by Mycobacterium sp. strain PYR-1. Appl Environ Microbiol 59:800–806

    PubMed  Google Scholar 

  22. Khan AA, Kim SJ, Paine DD, Cerniglia CE (2002) Classification of a polycyclic aromatic hydrocarbon-metabolizing bacterium, Mycobacterium sp. strain PYR-1, as Mycobacterium vanbaalenii sp. nov. Int J Syst Evol Microbiol 52:1997–2002

    Article  PubMed  Google Scholar 

  23. Kim YH (1999) Dissertation (German thesis), Universitat Stuttgart, Germany

    Google Scholar 

  24. Kim YH, Engesser KH, Cerniglia CE (2003) Two polycyclic aromatic hydrocarbon o-quinone reductases from a pyrene-degrading Mycobacterium. Arch Biochem Biophys 416:209–217

    Article  PubMed  Google Scholar 

  25. Kim, YH, Moody, JD, Freeman, JP, Brezna, B, Engesser, KH, Cerniglia, CE (2004) Evidence for the existence of PAH-quinone reductases and catechol-O-methyltransferase in Mycobacterium vanbaalenii PYR-1. J Ind Microbiol Biotechnol 31: 507–516

    Article  PubMed  Google Scholar 

  26. Kleespies M, Kroppenstedt RM, Rainey FA, Webb LE, Stackebrandt E (1996) Mycobacterium hodleri sp. nov., a new member of the fast-growing Mycobacteria capable of degrading polycyclic aromatic hydrocarbons. Int J Syst Bacteriol 46:683–687

    PubMed  Google Scholar 

  27. Lang E, Kroppenstedt RM, Swiderski J, Schumann P, Ludwig W, Schmid A, Weiss N (2003) Emended description of Janibacter terrae, including ten dibenzofuran-degrading strains and Janibacter brevis as its later heterotypic synonym. Int J Syst Evol Microbiol 53:1999–2005

    Article  PubMed  Google Scholar 

  28. Link CD, Reiner AM (1983) Genotypic exclusion: a novel relationship between the ribitol-arabitol and galactitol genes of E. coli. Mol Gen Genet 189:337–339

    Article  PubMed  Google Scholar 

  29. Lloyd-Jones G, Hunter DWF (1997) Characterization of fluoranthene- and pyrene-degrading Mycobacterium-like strains by RAPD and SSU sequencing. FEMS Microbiol Lett 153:51–56

    Article  PubMed  Google Scholar 

  30. Maidak BL, Olsen GJ, Larsen N, Overbeek R, McCaughey MJ, Woese CR (1994) The Ribosomal Database Project (RDP). Nucleic Acids Res 24:82–85

    Article  Google Scholar 

  31. Miller, CD, Hall, K, Liang, YN, Nieman, K, Sorensen, D, Issa, B, Anderson, AJ, Sims, RC (2004) Isolation and characterization of polycyclic aromatic hydrocarbon-degrading Mycobacterium isolates from soil. Microb Ecol 48: 230–238

    Article  PubMed  Google Scholar 

  32. Molina M, Araujo R, Hodson RR (1999) Cross-induction of pyrene and phenanthrene in a Mycobacterium sp. isolated from polycyclic aromatic hydrocarbon contaminated river sediments. Can J Microbiol 45:520–529

    PubMed  Google Scholar 

  33. Moody JD, Freeman JP, Doerge DR, Cerniglia CE (2001) Degradation of phenanthrene and anthracene by cell suspensions of Mycobacterium sp. strain PYR-1. Appl Environ Microbiol 67:1476–1483

    Google Scholar 

  34. Moody JD, Doerge DR, Freeman JP, Cerniglia CE (2002) Degradation of biphenyl by Mycobacterium sp. strain PYR-1. Appl Microbiol Biotechnol 58:364–369

    Google Scholar 

  35. Moody JD, Freeman JP, Fu PP, Cerniglia CE (2004) Degradation of benzo [a] pyrene by Mycobacterium vanbaalenii PYR-1. Appl Environ Microbiol 70:340–345

    Google Scholar 

  36. Rehmann K, Noll HP, Steinberg CEW, Kettrup AA (1998) Pyrene degradation by Mycobacterium sp. strain KR2. Chemosphere 36:2977–2992

    Google Scholar 

  37. Ridell M, Goodfellow M (1983) Numerical classification of Mycobacterium farcinogenes, Mycobacterium senegalense and related taxa. J Gen Microbiol 129:599–611

    Google Scholar 

  38. Saito H, Gordon RE, Juhlin I, Kappler W, Kwapinski JBG, McDurmont C, Pattyn SR, Runyon E, Stanford JL, Tarnok I, Tasaka H, Tsukamura M, Weiszfeiler I (1977) Cooperative numerical analysis of rapidly growing mycobacteria. Int J Syst Bacteriol 27:75–85

    Google Scholar 

  39. Schneider J, Grosser R, Jayasimhulu K, Xue W, Warshawsky D (1996) Degradation of pyrene, benzo[a]anthacene, benzo [a] pyrene by Mycobacterium sp. strain RJGII-135, isolated from a former coal gasification site. Appl Environ Microbiol 62:13–19

    Google Scholar 

  40. Stahl DA, Urbance JW (1990) The division between fast- and slow-growing species corresponds to natural relationships among the mycobacteria. J Bacteriol 172:116–124

    PubMed  Google Scholar 

  41. Thomson JD, Higgins DG, Gibson TJ (1994) CLUSTALW: Improving the sensitivity of progressive multiple alignment through sequence weighting, position specific gap penalties, and weight matrix choice. Nucleic Acids Res 22:4673–4680

    PubMed  Google Scholar 

  42. Tiehm A (1994) Degradation of polycyclic aromatic hydrocarbons in the presence of synthetic surfactants. Appl Environ Microbiol 60:258–263

    PubMed  Google Scholar 

  43. Tsukamura M, Ichiyama S (1986) Numerical classification of rapidly growing nonphotochromogenic mycobacteria. Microbiol Immunol 30:863–882

    PubMed  Google Scholar 

  44. Wang RF, Cao WW, Cerniglia CE (1995) Phylogenetic analysis of polycyclic aromatic hydrocarbon degrading mycobacteria by 16S rRNA sequencing. FEMS Microbiol Lett 130:75–80

    Article  PubMed  Google Scholar 

  45. Willumsen P, Karlson U, Stackebrandt E, Kroppenstedt RM (2001) Mycobacterium frederiksbergense sp. nov., a novel polycyclic aromatic hydrocarbon-degrading Mycobacterium species. Int J Syst Evol Microbiol 51:1715–1722

    PubMed  Google Scholar 

  46. Wilson K (1987) Preparation of genomic DNA from bacteria. In: Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds) Current protocols in molecular biology. John Wiley & Sons, Inc., New York, pp. 2.4.1–2.4.2

    Google Scholar 

  47. Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    PubMed  Google Scholar 

  48. Woodward MJ, Charles HP (1983) Polymorphism in Escherichia coli: rtl atl and gat regions behave as chromosomal alternatives. J Gen Microbiol 129:75–84

    PubMed  Google Scholar 

Download references

Acknowledgments

Y.-H Kim thanks Dr. Peter C.K. Lau and colleagues for friendly help since he wrote a part of this study during a visit to Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec. This study was supported in part under fellowship programs of the Deutscher Akademischer Austauschdienst (DAAD) and the Oak Ridge Institute of Science and Education (ORISE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Hak Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, YH., Engesser, KH. & Cerniglia, C.E. Numerical and Genetic Analysis of Polycyclic Aromatic Hydrocarbon-Degrading Mycobacteria. Microb Ecol 50, 110–119 (2005). https://doi.org/10.1007/s00248-004-0126-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-004-0126-3

Keywords

Navigation