Skip to main content
Log in

A Bacterium Belonging to the Rickettsiaceae Family Inhabits the Cytoplasm of the Marine Ciliate Diophrys appendiculata (Ciliophora, Hypotrichia)

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Bacteria of the family Rickettsiaceae (order Rickettsiales, α-Proteobacteria) are mainly known to be endosymbionts of arthropods with the capability to infect also vertebrate cells. Recently, they have also been found as leech endocytobionts. In the present paper, we report the first finding of a bacterium belonging to the family Rickettsiaceae in a natural population of a marine ciliate protozoan, namely Diophrys appendiculata, collected in the Baltic Sea. Bacteria were unambiguously identified through morphological characterization and the “full-cycle rRNA approach” (i.e., 16S rRNA gene characterization and use of specifically designed oligonucleotide probes for in situ detection). Symbionts are rod-shaped bacteria that grow freely in the cytoplasm of the host cell. They present two different morphotypes, similar in size, but different in cytoplasmic density. These are typical morphological features of members of the family Rickettsiaceae. 16S rRNA gene sequence showed that Diophrys symbionts share a high similarity value (>92%) with bacteria belonging to the genus Rickettsia. Phylogenetic analysis revealed that these new endosymbionts are clearly included in the clade of the family Rickettsiaceae, but they occupy an independent phylogenetic position with respect to members of the genus Rickettsia. This is the first report of a member of this family from a host protozoan and from a marine habitat. This result shows that this bacterial group is more diversified and widespread than supposed so far, and that its ecological relevance could until now have been underestimated. In light of these considerations, the two 16S rRNA oligonucleotide probes here presented, specific for members of the Rickettsiaceae, can represent useful tools for further researches on the presence and the spread of these microorganisms in the natural environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. MTEP Allsopp CM Hattingh SW Vogel BA Allsopp (1999) ArticleTitleEvaluation of 16S, map1 and pCS20 probes for detection of Cowdria and Ehrlichia species Epidemiol Infect 122 323–328

    Google Scholar 

  2. RI Amann L Krumholz DA Stahl (1990) ArticleTitleFluorescent oligonucleotide probing of whole cells for determinative, phylogenetic and environmental studies in microbiology J Bacteriol 172 762–770

    Google Scholar 

  3. RI Amann W Ludwig KH Schleifer (1995) ArticleTitlePhylogenetic identification and in situ detection of individual microbial cells without cultivation Microbiol Rev 59 143–169

    Google Scholar 

  4. RI Amann N Springer W Ludwig HD Goertz KH Schleifer (1991) ArticleTitleIdentification in situ and phylogeny of uncultured bacterial endosymbionts Nature 351 161–164

    Google Scholar 

  5. BE Anderson JE Dawson DC Jones KH Wilson (1991) ArticleTitleEhrlichia chaffeensis, a new species associated with human ehrlichiosis J Clin Microbiol 29 2838–2842

    Google Scholar 

  6. BE Anderson CE Greene DC Jones JE Dawson (1992) ArticleTitleEhrlichia ewingii sp. nov., the etiologic agent of canine granulocytic ehrlichiosis Int J Syst Bacteriol 42 299–302

    Google Scholar 

  7. DR Anderson HE Hopps MF Barile BC Bernheim (1965) ArticleTitleComparison of the ultrastructure of several rickettsiae, ornithosis virus, and Mycoplasma in tissue cultures J Bacteriol 90 1387–1404

    Google Scholar 

  8. SGE Andersson DR Stothard P Fuerst CG Kurland (1999) ArticleTitleMolecular phylogeny and rearrangement of rRNA genes in Rickettsia species Mol Biol Evol 16 987–995

    Google Scholar 

  9. N Bensaadi-Merchermek JC Salvado C Cagnon S Karama C Mouches (1995) ArticleTitleCharacterization of the unlinked 16S rDNA and 23S-5S rRNA operon of Wolbachia pipientis, a prokaryotic parasite of insect gonads Gene 165 81–86

    Google Scholar 

  10. SG Berk RS Ting GW Turner RJ Ashburn (1998) ArticleTitleProduction of respirable vesicles containing live Legionella pneumophila cells by two Acanthamoeba spp Appl Envir Microbiol 64 279–286

    Google Scholar 

  11. JE Brofft JV McArthur LJ Shimkets (2002) ArticleTitleRecovery of novel bacterial diversity from a forested wetland impacted by reject coal Environm Microb 4 764–769

    Google Scholar 

  12. A Bary ParticleDe (1879) Die Erscheinung der Symbiose Karl. J Trübner Strassburg 30

    Google Scholar 

  13. F Dini D Nyberg (1999) ArticleTitleGrowth rates of marine ciliates on diverse organisms reveal ecological specializations within morphospecies Microb Ecol 37 13–22

    Google Scholar 

  14. RH Don PT Cox BJ Wainwright K Baker JS Mattick (1991) ArticleTitleTouchdown PCR to circumvent spurious priming during gene amplification Nucleic Acids Res 19 4008

    Google Scholar 

  15. JS Dumler AF Barbet CPJ Bekker GA Dash GH Palmer SC Ray Y Rikihisa FR Rurangirwa (2001) ArticleTitleReorganization of genera in the families Rickettsiaceae and Anaplasmataceae in the order Rickettsiales: unification of some species of Ehrlichia with Anaplasma, Cowdria with Ehrlichia, and Ehrlichia with Neorickettsia, descriptions of six new species combinations and designation of Ehrlichia equi and “HGE agent” as subjective synonyms of Ehrlichia phagocytophila Int J Syst Evol Microbiol 51 2145–2165

    Google Scholar 

  16. CG Ehrenberg (1838) Die Infusionsthierchen als Vollkommene Organismen Leipzig L. Voss

    Google Scholar 

  17. J Felsenstein (1981) ArticleTitleEvolutionary trees from DNA sequences a maximum likehood approach J Mol Evol 17 368–376

    Google Scholar 

  18. J Felsenstein (1989) ArticleTitlePHYLIP—Phylogeny Inference Package (Version 3.2) Cladistics 5 164–166

    Google Scholar 

  19. M Fuchs G Wallner W Beisker I Schwippl W Ludwig R Amann (1998) ArticleTitleFlow cytometric analysis of the in situ accessibility of Escherichia coli 16S rRNA for fluorescently labeled oligonucleotide probes Appl Environ Microbiol 64 4973–4982

    Google Scholar 

  20. Goertz HD (2002) Symbiotic association between ciliates and prokaryotes. The Prokaryotes, electronic edition. Release 3.11. http://link.springer-ny.com:6335/contents/index.html

  21. A Kahl (1932) Urtiere oder Protozoa. 1. Wimpertiere oder Ciliata (Infusoria), eine Bearbeitung der freilebenden und ectocommensalen Infusorien der Erde, unter Auschluss der Marinen Tintinnidae. 3. Spirotricha F Dahl (Eds) Die Tierwelt Deutschlands, Vol 25 G Fischer Jena 399–650

    Google Scholar 

  22. Y Kikuchi S Sameshima O Kitade J Kojima T Fukatsu (2002) ArticleTitleNovel clade of Rickettsia sp from leeches. Appl Environm Microbiol 68 999–1004

    Google Scholar 

  23. M Kimura (1980) ArticleTitleA simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide-sequences J Mol Evol 16 111–120

    Google Scholar 

  24. AE Lew KR Gale CM Minchin V Shkap DT Waal Particlede (2003) ArticleTitlePhylogenetic analysis of the erythrocytic Anaplasma species based on 16S rDNA and GroEL (HSP60) sequences of A. marginale, A. centrale, and A. ovis and the specific detection of A. centrale vaccine strain Vet Microbiol 92 145–160

    Google Scholar 

  25. A Loy M Horn M Wagner (2003) ArticleTitleprobe Base—an on line resource for rRNA-targeted oligonucleotide probes Nucleic Acids Res 31 514–516

    Google Scholar 

  26. W Ludwig M Amann E Martinez-Romero W Schönhuber S Bauer A Neef KH Schleifer (1998) ArticleTitlerRNA based identification and detection systems for rhizobia and other bacteria Plant Soil 204 1–19

    Google Scholar 

  27. W Ludwig O Strunk S Klugbauer N Klugbauer M Weizenegger J Neumaier M Bachleitner KH Schleifer (1998) ArticleTitleBacterial phylogeny based on comparative sequence analysis Electrophoresis 19 554–568

    Google Scholar 

  28. W Ludwig O Strunk R Westram L Richter H Meier Yadhukumar A Buchner T Lai S Steppi G Jobb W Förster I Brettske S Gerber AW Ginhart O Gross S Grumann S Hermann R Jost A Konig T Liss R Lüßmann M May B Nonhoff B Reichel R Strehlow A Stamatakis N Stuckmann A Vilbig M Lenke T Ludwig A Bode KH Schleifer (2004) ArticleTitleARB: a software environment for sequence data Nucleic Acids Res 32 1363–1371

    Google Scholar 

  29. W Manz RI Amann W Ludwig A Wagner KH Schleifer (1992) ArticleTitlePhylogenetic oligodeoxynucleotide probes for the major subclasses of proteobacteria: problems and solutions Syst Appl Microbiol 15 593–600

    Google Scholar 

  30. V Marinozzi (1964) ArticleTitleCytochimie ultrastructurale du nucléole-RNA et protéines intranucléolaires J Ultrastruct Res 10 433–456

    Google Scholar 

  31. N Ohashi M Fukuhara M Shimada A Tamura (1995) ArticleTitlePhylogenetic position of Rickettsia tsutsugamushi and relationship among its antigenic variants by analyses of their 16S rRNA gene sequences FEMS Microbiol Lett 125 299–304

    Google Scholar 

  32. GJ Olsen H Matsuda R Hagstrom R Overbeek (1994) ArticleTitleFastDNAml: A tool for construction of phylogenetic trees of DNA sequences using maximum likelihood Comput Appl Biosci 10 41–48

    Google Scholar 

  33. G Petroni G Rosati C Vannini L Modeo F Dini F Verni (2003) ArticleTitleIn situ identification by fluorescently labeled oligonucleotide probes of morphologically similar, closely related ciliate species Microb Ecol 45 156–162

    Google Scholar 

  34. G Petroni S Spring KH Schleifer F Verni G Rosati (2000) ArticleTitleDefensive extrusive ectosymbionts of Euplotidium (Ciliophora) that contain microtubule-like structures are bacteria related to Verrucomicrobia Proc Natl Acad Sci USA 97 1813–1817

    Google Scholar 

  35. C Pretzman D Ralph DR Stothard PA Fuerst Y Rikihisa (1995) ArticleTitle16S rRNA gene sequence of Neorickettsia helminthoeca and its phylogenetic alignment with members of the genus Ehrlichia Int J Syst Bacteriol 45 207–211

    Google Scholar 

  36. R Rossellò-Mora R Amann (2001) ArticleTitleThe species concept for prokaryotes FEMS Microbiol Rev 25 39–67

    Google Scholar 

  37. V Roux D Raoult (1995) ArticleTitlePhylogenetic analysis of the genus Rickettsia by 16S rDNA sequencing Res Microbiol 146 385–396

    Google Scholar 

  38. FR Rurangirwa CA Brayton TC McGuire DP Knowles GH Palmer (2002) ArticleTitleConservation of the unique rickettsial rRNA gene arrangement in Anaplasma Int J Syst Evol Microbiol 52 1405–1409

    Google Scholar 

  39. N Saitou M Nei (1987) ArticleTitleThe neighbor-joining method: a new method for reconstructing phylogenetic trees Mol Biol Evol 4 406–425

    Google Scholar 

  40. HJ Schmidt HD Görtz RL Quackenbush (1987) ArticleTitleCaedibacter caryophila sp. nov., a killer symbiont inhabiting in the macronucleus of Paramecium caudatum Int J Syst Bacteriol 37 459–462

    Google Scholar 

  41. Z Sekeyova V Roux D Raoult (2001) ArticleTitlePhylogeny of Rickettsia spp. inferred by comparing sequences of “gene D”, which encodes an intracytoplasmic protein Int J Syst Evol Microbiol 51 1353–1360

    Google Scholar 

  42. C Skriwan M Fajardo S Hagele M Horn M Wagner R Michel G Krohne M Schleicher J Hacker M Steinert (2002) ArticleTitleVarious bacterial pathogens and symbionts infect the amoeba Dyctiostelium discoideum Int J Med Microbiol 291 615–624

    Google Scholar 

  43. DJ Silverman (1991) ArticleTitleSome contributions of electron microscopy to the study of the rickettsiae Eur J Epidemiol 7 200–206

    Google Scholar 

  44. DJ Silverman CL Wisseman A Waddell (1980) ArticleTitleIn vitro studies of rickettsia–host interactions: ultrastructural study of Rickettsia prowazeki–infected chicken embryo fibroblasts Infect Immun 29 778–790

    Google Scholar 

  45. N Springer W Ludwig R Amann HJ Schmidt HD Goertz KH Schleifer (1993) ArticleTitleOccurence of fragmented 16rRNA in an obligate bacterial endosymbiont of Paramecium caudatum Proc Natl Acad Sci USA 90 9892–9895

    Google Scholar 

  46. E Stackebrandt (2003) ArticleTitleThe richness of prokaryotic diversity: there must be a species somewhere Food Technol Biotechnol 41 17–22

    Google Scholar 

  47. DA Stahl R Amann (1991) Development and application of nucleic acid probes E Stackebrandt M Goodfellow (Eds) Nucleic Acid Techniques in Bacterial Systematics John Wiley & Sons Chichester, England 205–248

    Google Scholar 

  48. M Steinert K Birkness E White B Fields F Quinn (1998) ArticleTitleMycobacterium avium bacilli grow saprozoically in coculture with Acanthamoeba polyphaga and survive within cyst walls Appl Environ Microbiol 64 2256–2261

    Google Scholar 

  49. M Steinert L Emody R Amann J Hacker (1997) ArticleTitleResuscitation of viable but nonculturable cells of Legionella pneumophila Philadelphia IR 32 by Acantamoeba castellanii Appl Environ Microbiol 63 2047–2053

    Google Scholar 

  50. DR Stothard JB Clark PA Fuerst (1994) ArticleTitleAncestral divergence of Rickettsia bellii from the spotted fever and typhus groups of Rickettsia and antiquity of the genus Rickettsia Int J Syst Bacteriol 44 798–804

    Google Scholar 

  51. A Tamura N Ohashi H Urakami S Miyamura (1995) ArticleTitleClassification of Rickettsia tsutsugamushi in a new genus, Orientia gen. nov., as Orientia tsutsugamushi comb. nov Int J Syst Bacteriol 45 589–591

    Google Scholar 

  52. JP Thiéry (1967) ArticleTitleMise en évidence des polysaccharides sur coups fines en microscopie electronique J Microsc 6 987–1018

    Google Scholar 

  53. C Vannini G Rosati G Verni G Petroni (2004) ArticleTitleIdentification of the bacterial endosymbionts of the marine ciliate Euplotes magnicirratus (Ciliophora, Hypotrichia) and proposal of ‘Candidates Devosia euplotis’ sp. nov Int J Syst Evol Microbiol 54 1151–1156

    Google Scholar 

  54. WG Weisburg ME Dobson JE Samuel GA Dasch LP Mallavia L Mandelco JE Sechrest E Weiss CR Woese (1989) ArticleTitlePhylogenetic diversity of the Rickettsiae J Bacteriol 171 4202–4206

    Google Scholar 

  55. E Weiss JW Moulder (1984) Order I. Rickettsiales Gieszezkiewiez 1939 NR Krieg JG Holt (Eds) Bergey’s Manual of Systematic Bacteriology, vol 1 Williams and Wilkins Baltimore 689–704

    Google Scholar 

  56. CL Wisseman AD Waddel DJ Silverman (1976) ArticleTitleIn vitro studies on rickettsia–host cell interactions: lag phase in intracellular growth cycle as a function of stage of growth of infecting Rickettsia prowazeki, with preliminary observations on inhibition of rickettsial-uptake by host cell fragments Infect Immunol 13 1749–1760

    Google Scholar 

  57. Yu, XJ, Walker, DH (2003) The order Rickettsiales. The Prokaryotes, electronic edition, Release 3.12

Download references

Acknowledgments

This study was supported by MURST (Italian Ministry for University and Research). We thank G. Silvatici for assistance in electron microscopy analysis. S. Bucci and M. Ragghianti are gratefully acknowledged for providing equipment and assistance for the fluorescence microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Rosati.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vannini, C., Petroni, G., Verni, F. et al. A Bacterium Belonging to the Rickettsiaceae Family Inhabits the Cytoplasm of the Marine Ciliate Diophrys appendiculata (Ciliophora, Hypotrichia). Microb Ecol 49, 434–442 (2005). https://doi.org/10.1007/s00248-004-0055-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-004-0055-1

Keywords

Navigation