Microbial Ecology

, Volume 49, Issue 3, pp 468–473 | Cite as

Medium N:P Ratios and Specific Growth Rate ComodulateMicrocystin and Protein Content in Microcystis aeruginosa PCC7806 and M. aeruginosa UV027

  • T.G. DowningEmail author
  • C.S. Sember
  • M.M. Gehringer
  • W. Leukes


Hepatotoxin production in cyanobacteria has been shown to correlate to external stimuli such as light and nutrient concentrations and ratios, although conflicting results have been reported. Specific growth rates and protein and microcystin content of M. aeruginosa PCC7806 and M. aeruginosa UV027 were determined under nonlimiting batch culture conditions for a range of medium nitrogen and phosphorous atomic ratios. Both strains exhibited a similar optimal medium N:P ratio for increased cellular microcystin levels. Additionally, total cellular protein content and intracellular microcystin content were significantly correlated to each other (r2 = 0.81, p < 0.001). Microcystin and protein content increased considerably as the maximum specific growth rate for the experimental conditions was reached. The significant correlation of cellular protein and microcystin content and their relative increase with increasing specific growth rate, within defined ranges of medium N:P ratios, suggest a close association between microcystin production and N:P ratio–dependent assimilation of nitrogen, and resulting total cellular protein levels, which may be further modulated by specific growth rate.


Specific Growth Rate Microcystis Aeruginosa High Specific Growth Rate Protein Phosphatase Inhibition Cellular Protein Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by grant K5/1401 from the Water Research Commission of South Africa.


  1. 1.
    Ash, C, MacKintosh, C, Mackintosh, R, Fricker, CR 1995Use of a protein phosphatase inhibition test for the detection of cyanobacterial toxins in waterWat Sci Technol315153Google Scholar
  2. 2.
    Benschneider, K, Robinson, RJ 1952A new spectrophotometric method for the detection of nitrate in seawaterJ Mar Res118796Google Scholar
  3. 3.
    Carmichael, WW 1994The toxins of cyanobacteriaSci Am2707886Google Scholar
  4. 4.
    Codd, GA, Poon, GK 1988Cyanobacterial toxinsRogers, LJGallon, JR eds. Biochemistry of the Algae and CyanobacteriaClarendon PressOxford283296Google Scholar
  5. 5.
    Droop, MR 1973Some thoughts on nutrient limitation in algaeJ Phycol9264272Google Scholar
  6. 6.
    Eriksson, JE, Gronberg, L, Nygard, S, Slotte, JP, Meriluoto, JAO 1990Hepatocellular uptake of 3H-dihydromicrocystin-LR, a cyclic peptide toxinBiochim Biophys Acta10256066Google Scholar
  7. 7.
    Hu, Q, Westerhoff, P, Vermaas, WJM 2000Removal of nitrate from groundwater by cyanobacteria: quantitative assessment of factors influencing nitrate uptakeAppl Env Microbiol66133139Google Scholar
  8. 8.
    Kaebernick, M, Neilan, BA, Boerner, T, Dittmann, E 2000Light and the transcriptional response of the microcystin biosynthetic gene clusterAppl Environ Microbiol6633873392Google Scholar
  9. 9.
    Kaebernick, M, Neilan, BA 2001Ecological and molecular investigations of cyanotoxin productionFEMS Microbiol Ecol3519Google Scholar
  10. 10.
    Kotak, BG, Lam, K-Y, Prepas, EE, Kenefick, SL, Hrudey, SE 1995Variability of the hepatotoxin microcystin-LR in hypereutrophic drinking water lakesJ Phycol31248263Google Scholar
  11. 11.
    Lawton, L, Marsalek, B, Padisák, J, Chorus, I 1999Cyanobacterial toxinsChorus, IBartram, J eds. Toxic Cyanobacteria in Water—A Guide to Their Public Health Consequences and ManagementE & F SponLondon347367Google Scholar
  12. 12.
    Lee, H-M, Vasques-Bermudez, MF, Tandeau Marsac, NT 1999The global regulator NtcA regulates transcription of the signal transducer PII (GlnB) and influences its phosphorylation level in Synechococcus sp. Strain PCC7942J Bacteriol18126972702Google Scholar
  13. 13.
    Lee, SJ, Jang, M-H, Kim, H-S, Yoon, B-D, Oh, H-M 2000Variation in microcystin content of Microcystis aeruginosa relative to medium N:P ratio and growth stageJ Appl Microbiol89323329Google Scholar
  14. 14.
    Long, BM, Jones, GJ, Orr, PT 2001Cellular microcystin content in N-limited Microcystis aeruginosa can be predicted from growth rateAppl Environ Microbiol67278283Google Scholar
  15. 15.
    MacKintosh, C, Beattie, KA, Klump, S, Cohen, P, Codd, GA 1990Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plantsFEBS Lett264187192Google Scholar
  16. 16.
    Murphy, J, Riley, JP 1962A modified single solution method for the determination of phosphate in natural watersAnal Chim Acta273136Google Scholar
  17. 17.
    Oh, H-M, Lee, SJ, Jang, M-H, Yoon, B-D 2000Microcystin production by Microcystis aeruginosa in a phosphorus-limited chemostatAppl Environ Microbiol66176179Google Scholar
  18. 18.
    Orr, PT, Jones, GJ 1998Relationship between microcystin production and cell division rates in nitrogen-limited Microcystis aeruginosa culturesLimnol Oceanogr4316041614Google Scholar
  19. 19.
    Rippka, R 1998Recognition and identification of cyanobacteriaMethods Enzymol1672867Google Scholar
  20. 20.
    Sivonen, K 1996Cyanobacterial toxins and toxin productionPhycologia351224Google Scholar
  21. 21.
    Sivonen, K, Jones, GJ 1999Cyanobacterial toxinsChorus, IBartram, J eds. Toxic Cyanobacteria in Water — A Guide to Their Public Health Consequences and ManagementE & F SponLondon41111Google Scholar
  22. 22.
    Smith, PK, Krohn, RI, Hermanson, GT, Mallia, AK, Gartner, FH, Provenzano, MD, Fujimoto, EK, Goeke, NM, Olsen, BJ, Klenk, DC 1985Measurement of protein using bicinchoninic acidAnal Biochem1507685Google Scholar
  23. 23.
    Utkilen, H, Gjølme, N 1992Toxin production by Microcystis aeruginosa as a function of light in continuous cultures and its ecological significanceAppl Environ Microbiol5813211325Google Scholar
  24. 24.
    Utkilen, H, Gjølme, N 1995Iron-stimulated toxin production by Microcystis aeruginosaAppl Environ Microbiol61797800Google Scholar
  25. 25.
    Westhuizen, AJ, Eloff, JN 1985The effect of temperature and light on toxicity of and growth of the blue-green alga Microcystis aeruginosa (UV-006)Planta1635559Google Scholar
  26. 26.
    Ward, CJ, Beattie, A, Lee, EYC, Codd, GA 1997Colorimetric protein phosophatase inhibition assay of laboratory strains and natural blooms of cyanobacterial comparisons with high-performance liquid chromatography analysis for microcystinsFEMS Lett153465473Google Scholar
  27. 27.
    Watanabe, MF, Oishi, S 1985Effects of environmental factors on toxicity of cyanobacterium (Microcystis aeruginosa) under culture conditionsAppl Environ Microbiol4913421344Google Scholar
  28. 28.
    Watanabe, MF, Hrada, K-I, Matsuura, K, Watanabe, M, Suzuki, M 1989Heptapeptide toxin production during the batch culture of two Microcystis species (cyanobacteria)J Appl Phycol1161165Google Scholar
  29. 29.
    Wicks, RJ, Thiel, PG 1990Environmental factors affecting the production of peptide toxins in floating scums of the cyanobacterium Microcystis aeruginosa in a hypertrophic African reservoirEnviron Sci Technol2414131418Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • T.G. Downing
    • 1
    Email author
  • C.S. Sember
    • 1
  • M.M. Gehringer
    • 1
  • W. Leukes
    • 2
  1. 1.Department of Biochemistry and MicrobiologyUniversity of Port ElizabethPort ElizabethSouth Africa
  2. 2.Department of Biochemistry, Microbiology and BiotechnologyRhodes UniversityGrahamstownSouth Africa

Personalised recommendations