Microbial Ecology

, Volume 49, Issue 3, pp 416–424 | Cite as

Brevibacillus brevis Isolated from Cadmium- or Zinc-Contaminated Soils Improves in Vitro Spore Germination and Growth of Glomus mosseae under High Cd or Zn Concentrations

  • A. Vivas
  • J.M. Barea
  • R. AzcónEmail author


In this study we investigated the saprophyte growth of two arbuscular–mycorrhizal fungi (Glomus mosseae isolate) under increasing Cd or Zn levels and the influence of a selected bacterial strain of Brevibacillus brevis. Microorganisms here assayed were isolated from Cd or Zn polluted soils. B. brevis increased the presymbiotic growth (germination rate growth and mycelial development) of Glomus mosseae. Spore germination and mycelial development of both G. mosseae isolate were reduced as much as the amount of Cd or Zn increased in the growth medium. In medium supplemented with 20 μg Cd mL−1, the spore germination was only 12% after 20 days of incubation, but the coinoculation with B. brevis increased this value to 40% after only 15 days. The addition of 20 μg Cd mL−1 to the growth medium drastically inhibited hyphal development, but the presence of the bacterium increased hyphal growth of G. mosseae from 195% (without Cd) until 254% (with 20 μg Cd mL−1). The corresponding bacterial effect increasing micelial growth ranged from 125% (without Zn) to 232% (200 μg Zn mL−1) in the case of G. mosseae isolated from Zn-polluted soil. Mycelial growth under 5 μg Cd mL−1 (without bacterium) was similarly reduced from that produced at 15 μg Cd mL−1 in the presence of the bacteria. As well, 50 μg Zn mL−1 (without bacterium) reduced hyphal growth as much as 200 μg Zn mL−1 did in the presence of B. brevis. The bacterial effect on the saprophytic growth of G. mosseae in absence of metal may be due to the involvement of indole acetic acid (IAA) produced by these bacteria. The Cd bioaccumulation ability exhibited (76%) by Cd-adapted B. brevis reduced the Cd damage on G. mosseae in Cd-contaminated medium. These capabilities of B. brevis isolates partially alleviate the inhibitory effects of Cd or Zn on the axenic growth of G. mosseae.


Arbuscular Mycorrhizal Biosorption Indole Acetic Acid Spore Germination Indole Acetic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



A. Vivas thanks the Fundación Gran Mariscal de Ayacucho (Venezuela) for the scholarship to the project AGL2003-05619-CO2-02.


  1. 1.
    Allen, EB, Allen, MF 1980Natural re-establishment of vesicular-arbuscular mycorrhizae following stripmine reclamation in WyomingJ Appl Ecol17139147Google Scholar
  2. 2.
    Ann, ZQ, Hendrix, JW, Hershman, DE, Henson, GT 1990Evaluation of the „most probable number” (MPN) and wet-sieving methods for determining soil-borne populations of endogonaceous mycorrhizal fungiMycologia82516518Google Scholar
  3. 3.
    Azcón, R 1987Germination and hyphal growth of Glomus mosseae in vitro. Effect of rhizosphere bacteria and cell-free culture mediaSoil Biol Biochem19417419Google Scholar
  4. 4.
    Azcón, R 1989Selective interaction between free-living rhizosphere bacteria and vesicular–arbuscular mycorrhizal fungiSoil Biol Biochem21639644Google Scholar
  5. 5.
    Azcón, R 1993Growth and nutrition of nodulated mycorrhizal and non-mycorrhizal Hedysarum coronarium as a results of treatments with fractions from a plant growth-promoting rhizobacteriaSoil Biol Biochem2510371042Google Scholar
  6. 6.
    Azcón, R, Azcón-Aguilar, C, Barea, JM 1978Effects of plant hormones present in bacterial cultures on the formation and responses to VA mycorrhizaNew Phytol80359369Google Scholar
  7. 7.
    Azcón-Aguilar, C, Díaz-Rodriguez, RM, Barea, JM 1986Effect of soil microorganisms on spore germination and growth of the VA mycorrhizal fungus Glomus mosseaeTrans British Mycol Soc91337340Google Scholar
  8. 8.
    Berthelin, J, Munier-Lamy, C, Leyval, C 1995Effect of microorganisms on mobility of heavy metals in soilsHuang, PMBerthelin, JBollag, JMMcGill, WBPage, AL eds. Metals, Other Inorganics, and Microbial Activities (Environmental Impacts of Soil Component Interactions, vol 2)LewisBoca Raton317Google Scholar
  9. 9.
    Biró, B, Bayoumi, HEAF, Balázsy, S, Kecskés, M 1995Metal sensitivity of some symbiotic N2-fixing bacteria and Pseudomonas strainsActa Biol Hung46916Google Scholar
  10. 10.
    Burd, GI, Dixon, DG, Glick, BR 2000Plant growth promoting bacteria that decreased heavy metal toxicity in plantsCan J Microbiol46237245Google Scholar
  11. 11.
    Val, C, Barea, JM, Azcón-Aguilar, C 1999Assessing the tolerance to heavy metals of arbuscular mycorrhizal fungi isolated from sewage-sludge contaminated soilsAppl Soil Ecol11261269Google Scholar
  12. 12.
    del Val, C, Barea, JM, Azcón-Aguilar, C 1999Diversity of arbuscular mycorrhizal fungus populations in heavy-metal-contaminated soilsAppl Environm Microbiol65718723Google Scholar
  13. 13.
    Garbaye, J 1994Helper bacteria: a new dimension to the mycorrhizal symbiosisNew Phytol128197210Google Scholar
  14. 14.
    Hall, JL 2002Cellular mechanisms for heavy metal detoxification and toleranceJ Experiment Bot53111Google Scholar
  15. 15.
    Hepper, CM, Jakobsen, I 1983Hyphal growth from spores of the mycorrhizal fungus Glomus caledonius: effect of amino acidsSoil Biol Biochem155558Google Scholar
  16. 16.
    Higham, DP, Sadler, PJ 1984Cadmium-resistant Pseudomonas putida synthezises novel cadmium proteinsScience22510431046Google Scholar
  17. 17.
    Higham, DP, Sadler, PJ, Scawen, MD 1985Cadmium-resistance in Pseudomonas putida: growth and uptake of cadmiumJ Gen Microbiol13135392544Google Scholar
  18. 18.
    Joshi-Tope, G, Francis, AJ 1995Mechanisms of biodegradation of metal-citrate complexes by Pseudomonas fluorescensJ Bacteriol17719891993Google Scholar
  19. 19.
    Kádár I, (1995) Contamination of the soil–plant–animal–man foodchain by chemical elements in Hungary. (In Hungarian) Ministry of Environmental Protection and Land Management, BudapestGoogle Scholar
  20. 20.
    Kanazawa, S, Mori, K 1996Isolation of cadmium-resistant bacteria and their resistance mechanisms. Part 1. Isolation of Cd-resistant bacteria from soils contaminated with heavy metalsSoil Sci Plant Nutr42725730Google Scholar
  21. 21.
    Kanazawa, S, Mori, K 1996Isolation of cadmium-resistant bacteria and their resistance mechanisms. Part II. Cadmium biosorption by Cd resistant and sensitive bacteriaSoil Sci Plant Nutr42731736Google Scholar
  22. 22.
    Krom, BP, Huttinga, H, Warner, JB, Lolkema, JS 2002Impact of the Mg2+-citrate transporter CitM on heavy metal toxicity in Bacillus subtilisArchiv Microbiol178370375Google Scholar
  23. 23.
    Leyval, C, Joner, EJ, del Val, C, Haselwandter, K (2002Potential or arbuscular mycorrhizal fungi for bioremediationGianinazzi, SSchüepp, HBarea, JMHaselwandter, K eds. Mycorrhiza Technology in Agriculture, from Genes to BioproductsBirkhäuser VerlagBasel175186Google Scholar
  24. 24.
    Leyval, C, Turnau, K, Haselwandter, K 1997Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspectsMycorrhiza7139153Google Scholar
  25. 25.
    Materson, AM 1992Effects of agrochemicals and heavy metals on fast-growing rhizobia and their symbiosis with small-seeded legumesSoil Biol Biochem24435445Google Scholar
  26. 26.
    Misra, TK (2000) Heavy metals, bacterial resistances. In: Encyclopedia of Microbiology, Vol. 2: 618–627Google Scholar
  27. 27.
    Mosse, B 1962The establishment of vesicular-arbuscular mycorrhiza under aseptic conditionsJ General Microbiol27509520Google Scholar
  28. 28.
    Probanza, A, Lucas, JA, Acero, N, Gutierrez Mañero, FJ 1996The influence of native rhizobacteria on european alder (Alnus glutinosa L.) growth. I. Characterization of growth promoting and growth inhibiting bacterial strainsPlant Soil1825966Google Scholar
  29. 29.
    Sakamoto, K, Yagasaki, M, Kirimura, K, Usami, S 1989Resistance acquisition of Thiobacillus thioxidans upon cadmium and zinc ion addition and formation of cadmium ion-binding and zinc ion-binding proteins exhibiting metallothionein-like propertiesJ Ferment Bioengin67266273Google Scholar
  30. 30.
    Scott, JA 1990Sites of cadmium uptake in bacteria used for biosorptionAppl Microbiol Biotechnol33221225Google Scholar
  31. 31.
    Scott, JA, Palmer, SJ 1988Cadmium biosorption by bacterial exopolysaccharideBiotechnol Lett104348Google Scholar
  32. 32.
    Shetty, KG, Banks, MK, Hetrick, BA, Schwab, AP 1994Biological characterization of a southeast Kansas mining siteWater Air Soil Pollut78169177Google Scholar
  33. 33.
    Shetty, KG, Hetrick, B, Figge, D, Schwab,  1994Effects of mycorrhizae and other soil microbes on revegetation of heavy metal contaminated mine spoilEnviron Pollut86181188Google Scholar
  34. 34.
    Southam, G (2002) Metal stressed environments, bacteria. Encyclopedia Environ Microbiol: 1893–1901Google Scholar
  35. 35.
    Tynecka, Z 1981Reduced cadmium transport determined by a resistance plasmid in Staphylococcus aureusJ Bacteriol147305312Google Scholar
  36. 36.
    Vivas, A, Marulanda, A, Gómez, M, Barea, JM, Azcón, R 2003Physiological characteristics (SDH and ALP activities) of arbuscular mycorrhizal colonization as affected by Bacillus thuringiensis inoculation under two phosphorus levelsSoil Biol Biochem35987996Google Scholar
  37. 37.
    Vivas, A, Vörös, I, Biró, B, Barea, JM, Ruiz-Lozano, JM, Azcón, R 2003Beneficial effects of indigenous Cd-tolerant and Cd-sensitive Glomus mosseae associated with a Cd-adapted strain of Brevibacillus sp. in improving plant tolerance to Cd contaminationAppl Soil Ecol24177786Google Scholar
  38. 38.
    Vivas, A, Vörös, I, Biró, B, Campos, E, Barea, JM, Azcón, R 2003cSymbiotic efficiency of autochthonous arbuscular mycorrhizal fungus (G. mosseae) and Brevibacillus sp. isolated from cadmium polluted soil under increasing cadmium levelsEnviron Pollut126179189Google Scholar
  39. 39.
    Wöhler, I 1997Auxin-indole derivatives in soils determined by a colorimetric method and by high performance liquid chromatographyMicrobiol Res152399405Google Scholar
  40. 40.
    Vörös, I, Biró, B, Takács, T, Köves-Péchy, K, Bujtás, K 1998Effect of arbuscular mycorrhizal fungi on heavy metal toxicity to Trifolium pratense in soils contaminated with Cd, Zn and Ni saltsAgrokém. Talajtan47227288Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Departamento de Microbiología del Suelo y Sistemas SimbióticosEstación Experimental del Zaidín, CSICGranadaSpain

Personalised recommendations