Advertisement

Microbial Ecology

, Volume 49, Issue 3, pp 353–366 | Cite as

Effects of Dissolved and Complexed Copper on Heterotrophic Bacterial Production in San Diego Bay

  • Thomas J. BoydEmail author
  • David M. Wolgast
  • Ignacio Rivera-Duarte
  • Osmund Holm-Hansen
  • Christopher D. Hewes
  • Alberto Zirino
  • D. Bart Chadwick
Article

Abstract

Bacterial abundance and production, free (uncomplexed) copper ion concentration, total dissolved copper concentration, dissolved organic carbon (DOC), total suspended solids (TSS), and chlorophyll a were measured over the course of 1 year in a series of 27 sample “Boxes” established within San Diego Bay. Water was collected through a trace metal-clean system so that each Box’s sample was a composite of all the surface water in that Box. Bacterial production, chlorophyll a, TSS, DOC, and dissolved copper all generally increased from Box 1 at the mouth of the Bay to Box 27 in the South or back Bay. Free copper ion concentration generally decreased from Box 1 to Box 27 presumably due to increasing complexation capacity within natural waters. Based on correlations between TSS, chlorophyll a, bacterial production or DOC and the ratio of dissolved to free Cu ion, both DOC and particulate (bacteria and algae) fractions were potentially responsible for copper complexation, each at different times of the year. CuCl2 was added to bacterial production assays from 0 to 10 μg L−1 to assess acute copper toxicity to the natural microbial assemblage. Interestingly, copper toxicity appeared to increase with decreases in free copper from the mouth of the Bay to the back Bay. This contrasts the free-ion activity model in which higher complexation capacity should afford greater copper protection. When cell-specific growth rates were calculated, faster growing bacteria (i.e. toward the back Bay) appeared to be more susceptible to free copper toxicity. The protecting effect of natural dissolved organic material (DOM) concentrated by tangential flow ultrafiltration (>1 kDa), illite and kaolinite minerals, and glutathione (a metal chelator excreted by algae under copper stress) was assessed in bacterial production assays. Only DOM concentrate offered any significant protection to bacterial production under increased copper concentrations. Although the potential copper protecting agents were allowed to interact with added copper before natural bacteria were added to production assays, there may be a temporal dose–response relationship that accounts for higher toxicity in short production assays. Regardless, it appears that effective natural complexation of copper in the back portions of San Diego Bay limits exposure of native bacterial assemblages to free copper ion, resulting in higher bacterial production.

Keywords

Total Suspended Solid Natural Organic Matter Bacterial Production Copper Toxicity Free Copper 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the Strategic Environmental Research and Development Program (SERDP) under project CP-1156. The opinions and assertions contained herein are not to be construed as official or reflecting the views of the U.S. Navy or the naval service at large. The authors wish to thank the captain and crew of the R/V Ecos for sample collection logistics and Dr. Joanne Jones-Meehan for critical review of this manuscript.

References

  1. 1.
    Achterberg, EP, Van Elteren, JT, Kolar, ZI 2002Species kinetics and heterogeneous reactivity of dissolved cu in natural freshwatersEnviron Sci Technol36914920Google Scholar
  2. 2.
    Babich, H, Stotzky, G 1977Reductions in toxicity of cadmium to microorganisms by clay-mineralsAppl Environ Microbiol33696705Google Scholar
  3. 3.
    Belli, SL, Zirino, A 1993Behavior and calibration of the copper(Ii) ion-selective electrode in high chloride media and marine watersAnal Chem6525832589Google Scholar
  4. 4.
    Bianchi, TS, Lambert, CD, Santschi, PH, Guo, LD 1997Sources and transport of land-derived particulate and dissolved organic matter in the Gulf of Mexico (Texas shelf/slope): the use of lignin-phenols and loliolides as biomarkersOrg Geochem276578Google Scholar
  5. 5.
    Brand, LE, Sunda, WG, Guillard, RRL 1986Reduction of marine-phytoplankton reproduction rates by copper and cadmiumJ Exp Mar Biol Ecol96225250Google Scholar
  6. 6.
    Bruland, KW, Coale, KH, Mart, L 1985Analysis of seawater for dissolved cadmium, copper and lead—an intercomparison of voltammetric and atomic-absorption methodsMar Chem17285300Google Scholar
  7. 7.
    Bruland, KW, Donat, JR, Hutchins, DA 1991Interactive influences of bioactive trace-metals on biological production in oceanic watersLimnol Oceanogr3615551577Google Scholar
  8. 8.
    Campbell, PGC 1995Interactions between trace metals and aquatic organisms: a critique of the free-ion activity modelTessier, ATurner, DR eds. Metal Speciation and Bioavailability in Aquatic SystemsWileyNew York45102Google Scholar
  9. 9.
    Chapman, JS, Diehl, MA, Lyman, RC 1993Biocide susceptibility and intracellular glutathione in escherichia-coliJ Indust Microbiol12403407Google Scholar
  10. 10.
    Coale, KH, Bruland, KW 1988Copper complexation in the Northeast PacificLimnol Oceanogr3310841101Google Scholar
  11. 11.
    Coale, KH, Bruland, KW 1990Spatial and temporal variability in copper complexation in the North PacificDeep Sea Res37317336Google Scholar
  12. 12.
    Collins, YE, Stotzky, G 1989Factors affecting the toxicity of heavy metals to microbesBeveridge, TJDoyle, RJ eds. Metal Ions and BacteriaWileyNew York3190Google Scholar
  13. 13.
    Croot, PL, Moffett, JW, Brand, LE 2000Production of extracellular Cu complexing ligands by eucaryotic phytoplankton in response to Cu stressLimnol Oceanogr45619627Google Scholar
  14. 14.
    Davis, JA 1984Complexation of trace metals by adsorbed natural organic matterGeochim Cosmochim Acta48679691Google Scholar
  15. 15.
    Di Toro, DM, Allen, HE, Bergman, HL, Meyer, JS, Paquin, PR, Santore, RC 2001Biotic ligand model of the acute toxicity of metals. 1. Technical basisEnviron Toxicol Chem2023832396Google Scholar
  16. 16.
    Donat, JR, Bruland, KW 1995Trace elements in the oceansSalbu, BSteinnes, E eds. Trace Elements in Natural WatersCRC PressBoca RatonGoogle Scholar
  17. 17.
    Du, Q, Sun, ZX, Forsling, W, Tang, HX 1997Adsorption of copper at aqueous illite surfacesJ Colloid Interface Sci187232242Google Scholar
  18. 18.
    Farrah, H, Hatton, D, Pickering, WF 1980Affinity of metal-ions for clay surfacesChem Geol285568Google Scholar
  19. 19.
    González, JM, Santana-Casiano, JM, Perez-Peña, J, Millero, FJ 1995Binding of Cu(II) to the surface and exudates of the alga Dunaliella tyertiolecta in seawaterEnviron Sci Technol29289301Google Scholar
  20. 20.
    González-Dávila, M, Santana-Casiano, JM, Laglera, LM 2000Copper adsorption in diatom culturesMar Chem70161170Google Scholar
  21. 21.
    Gordon, AS, Donat, JR, Kango, RA, Dyer, BJ, Stuart, LM 2000Dissolved copper-complexing ligands in cultures of marine bacteria and estuarine waterMar Chem70149160Google Scholar
  22. 22.
    Gordon, AS, Dyer, BJ, Kango, RA, Donat, JR 1996Copper ligands isolated from estuarine water by immobilized metal affinity chromatography: temporal variability and partial characterizationMar Chem53163172Google Scholar
  23. 23.
    Gordon, AS, Howell, LD, Harwood, V 1994Responses of diverse heterotrophic bacteria to elevated copper concentrationsCan J Microbiol40408411Google Scholar
  24. 24.
    Guo, LD, Santschi, PH, Warnken, KW 2000Trace metal composition of colloidal organic material in marine environmentsMar Chem70257275Google Scholar
  25. 25.
    Hering, JG, Sunda, WG, Ferguson, RL, Morel, FMM 1987A field comparison of 2 methods for the determination of copper complexation—bacterial bioassay and fixed-potential amperometryMar Chem20299312Google Scholar
  26. 26.
    Holm, TR, Zhu, XF 1994Sorption by kaolinite of Cd2+, Pb2+ and Cu2+ from landfill leachate-contaminated groundwaterJ Contam Hydrol16271287Google Scholar
  27. 27.
    Holm-Hansen, O, Riemann, B 1978Chlorophyll a determination: improvements in methodologyOikos30438447Google Scholar
  28. 28.
    Honeyman, BD, Santschi, PH 1989A brownian-pumping model for trace metal scavenging: evidence from Th isotopesJ Mar Res47950995Google Scholar
  29. 29.
    Hongve, D, Skogheim, OK, Hindar, A, Abrahamsen, H 1980Effects of heavy-metals in combination with NTA, humic-acid, and suspended sediment on natural phytoplankton photosynthesisBull Environ Contam Toxicol25594600Google Scholar
  30. 30.
    Ikhsan, J, Johnson, BB, Wells, JD 1999A comparative study of the adsorption of transition metals on kaoliniteJ Colloid Interface Sci217403410Google Scholar
  31. 31.
    Johnson, HD, Grovhoug, JG, Valkirs, AO (1998) Copper loading to US Navy harbors. Technical Document #3052 3052Google Scholar
  32. 32.
    Jonas, RB 1989Acute copper and cupric ion toxicity in an estuarine microbial communityAppl Environ Microbiol554349Google Scholar
  33. 33.
    Kachlany, SC, Levery, SB, Kim, JS, Reuhs, BL, Lion, LW, Ghiorse, WC 2001Structure and carbohydrate analysis of the exopolysaccharide capsule of Pseudomonas putida G7Environ Microbiol3774784Google Scholar
  34. 34.
    Kjelleberg, S, Hermansson, M, Marden, P, Jones, GW 1987The transient phase between growth and nongrowth of heterotrophic bacteria, with emphasis on the marine environmentAnn Rev Microbiol412549Google Scholar
  35. 35.
    Leal, MFC, van den Berg, CMG 1998Evidence for strong copper(I) complexation by organic ligands in seawaterAquat Geochem44975Google Scholar
  36. 36.
    Leal, MFC, Vasconcelos, MTSD, van den Berg, CMG 1999Copper-induced release of complexing ligands similar to thiols by Emiliania huxleyi in seawater culturesLimnol Oceanogr4417501762Google Scholar
  37. 37.
    Lewis, AG, Whitfield, PH, Ramnarine, A 1972Some particulate and soluble agents affecting the relationship between metal toxicity and organisms survival in the calanoid copepod Euchaeta japonicaMar Biol17215221Google Scholar
  38. 38.
    Ma, HZ, Kim, SD, Allen, HE, Cha, DK 2002Effect of copper binding by suspended particulate matter on toxicityEnviron Toxicol Chem21710714Google Scholar
  39. 39.
    Martin, J-M, Dai, M-H, Cauwet, G 1995Significance of colloids in the biogeochemical cycling of organic carbon and trace metals in the Venice Lagoon (Italy)Limnol Oceanogr40119131Google Scholar
  40. 40.
    Moffett, JW, Brand, LE 1996Production of strong, extracellular Cu chelators by marine cyanobacteria in response to Cu stressLimnol Oceanogr41388395Google Scholar
  41. 41.
    Mong, HB, Brown, LR, Kim, JK 1995Effect of zinc and calcium on the intracellularly uptake of cadmium and growth of Escherichia coliJ Microbiol33302306Google Scholar
  42. 42.
    Perkins, J, Gadd, GM 1993Cesium toxicity, accumulation and intracellular-localization in yeastsMycol Res97717724Google Scholar
  43. 43.
    Qian, JG, Mopper, K 1996Automated high performance, high-temperature combustion total organic carbon analyzerAnal Chem6830903097Google Scholar
  44. 44.
    Riemann, B, Lindgaard-Joergensen, P 1990Effects of toxic-substances on natural bacterial assemblages determined by means of [H-3] thymidine incorporationAppl Environ Microbiol567580Google Scholar
  45. 45.
    Rivera-Duarte, I, Rosen, G, Lapota, D, Chadwick, D, Kear-Padilla, L, Zirino, A (2005) Copper toxicity to larval stages of three marine invertebrates and copper complexation capacity in San Diego Bay, California. Environ Sci Technol, Article 10.1021/es040545j S0013-936X(04)00545-0 Web Release Date: January 21, 2005Google Scholar
  46. 46.
    Santschi, PH, Lenhart, JJ, Honeyman, BD 1997Heterogeneous processes affecting trace contaminant distribution in estuaries: the role of natural organic matterMar Chem5899125Google Scholar
  47. 47.
    Simon, M, Azam, F 1989Protein content and protein synthesis rates of planktonic marine bacteriaMar Ecol Prog Ser51201213Google Scholar
  48. 48.
    Skrabal, SA, Donat, JR, Burdige, DJ 1997Fluxes of copper-complexing ligands from estuarine sedimentsLimnol Oceanogr42992996Google Scholar
  49. 49.
    Skrabal, SA, Donat, JR, Burdige, DJ (1997) Fluxes of strong copper-complexing ligands from estuarine sediments: a source to the water column? Abstr Pap Am Chem Soc 213: 161-GEOCGoogle Scholar
  50. 50.
    Skrabal, SA, Donat, JR, Burdige, DJ 2000Pore water distributions of dissolved copper and copper-complexing ligands in estuarine and coastal marine sedimentsGeochim Cosmochim Acta6418431857Google Scholar
  51. 51.
    Smith, DC, Azam, F 1992A simple, economical method for measuring bacterial protein synthesis rates in seawater using 3H-leucineMar Microb Food Webs6107114Google Scholar
  52. 52.
    Starr, TJ, Jones, ME 1957The effect of copper on the growth of bacteria isolated from marine environmentsLimnol Oceanogr23336Google Scholar
  53. 53.
    Sunda, WG, Ferguson, RL 1983Sensitivity of natural bacterial communities to additions of copper and to cupric ion activity: a bioasssay of copper complexation in seawaterWong, CSBoyle, EBruland, KWBurton, JDGoldberg, ED eds. Trace Metals in Sea WaterPlenum PressNew York871891Google Scholar
  54. 54.
    Sunda, WG, Gillespie, PA 1979Response of a marine bacterium to cupric ion and its use to estimate cupric ion activity in seawaterJ Mar Res37761777Google Scholar
  55. 55.
    Sunda, WG, Lewis, JAM 1978Effect of complexation by natural organic-ligands on toxicity of copper to a unicellular alga, monochrysis-lutheriLimnol Oceanogr23870876Google Scholar
  56. 56.
    Tang, DG, Warnken, KW, Santschi, PH 2001Organic complexation of copper in surface waters of Galveston BayLimnol Oceanogr46321330Google Scholar
  57. 57.
    Tubbing, DMJ, Santhagens, LR, Admiraal, W, Vanbeelen, P 1993Biological and chemical aspects of differences in sensitivity of natural-populations of aquatic bacterial communities exposed to copperEnviron Toxicol Water Quality8191205Google Scholar
  58. 58.
    US EPA 1997Water quality standards; establishment of numeric criteria for priority toxic pollutants for the state of California; proposed rule. 40 CFR Part 131Federal Register62150150Google Scholar
  59. 59.
    Vandenberg, cMG, Donat, JR 1992Determination and data evaluation of copper complexation by organic-ligands in sea-water using cathodic stripping voltammetry at varying detection windowsAnal Chim Acta257281291Google Scholar
  60. 60.
    Vasconcelos, MTSD, Leal, MFC 2001Adsorption and uptake of Cu by Emiliania huxleyi in natural seawaterEnviron Sci Technol35508515Google Scholar
  61. 61.
    Vasconcelos, MTSD, Leal, MFC, van den Berg, CMG 2002Influence of the nature of the exudates released by different marine algae on the growth, trace metal uptake, and exudation of Emiliania huxleyi in natural seawaterMar Chem77187210Google Scholar
  62. 62.
    Wells, ML, Kozelka, PB, Bruland, KW 1998The complexation of ‘dissolved’ Cu, Zn, Cd and Pb by soluble and colloidal organic matter in Narragansett Bay, RIMar Chem62203217Google Scholar
  63. 63.
    Wen, L-S, Santschi, PH, Gill, G, Paternostro, C 1999Estuarine trace metal distributions in Galveston Bay: importance of colloidal forms in the speciation of the dissolved phaseMar Chem63185212Google Scholar
  64. 64.
    Wen, L-S, Santschi, PH, Tang, DG 1997Interactions between radioactively labeled colloids and natural particles: evidence for colloidal pumpingGeochim Cosmochim Acta6128672878Google Scholar
  65. 65.
    Zirino, A, Belli, SL, Van der Weele, DA 1998Copper concentration and Cu(II) activity in San Diego BayElectroanalysis10423427Google Scholar
  66. 66.
    Zirino, A, Clavell, C, Seligman, PF, Barber, RT 1983Cu and pH in the Peruvian Upwelling SystemMar Chem122535Google Scholar
  67. 67.
    Zirino, A, Weele, DA, Belli, SL, DeMarco, R, Mackey, DJ 1998Direct measurement of Cu(II)aq in seawater at pH 8 with the jalpaite ion-selective electrodeMar Chem61173184Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Thomas J. Boyd
    • 1
    Email author
  • David M. Wolgast
    • 2
  • Ignacio Rivera-Duarte
    • 3
  • Osmund Holm-Hansen
    • 4
  • Christopher D. Hewes
    • 4
  • Alberto Zirino
    • 3
    • 4
  • D. Bart Chadwick
    • 3
  1. 1.Code 6114, MBGUS Naval Research LaboratoryWashingtonUSA
  2. 2.Scripps Institution of OceanographyLa JollaUSA
  3. 3.Marine Environmental Quality Branch D362SPAWAR System Center San DiegoSan DiegoUSA
  4. 4.Scripps Institution of Oceanography, MBRDLa JollaUSA

Personalised recommendations