Microbial Ecology

, Volume 48, Issue 2, pp 230–238 | Cite as

Isolation and Characterization of Polycyclic Aromatic Hydrocarbon–Degrading Mycobacterium Isolates from Soil

  • C.D. Miller
  • K. Hall
  • Y.N. Liang
  • K. Nieman
  • D. Sorensen
  • B. Issa
  • A.J. Anderson
  • R.C. Sims


Bioremediation of soils contaminated with wood preservatives containing polycyclic aromatic hydrocarbons (PAHs) is desired because of their toxic, mutagenic, and carcinogenic properties. Creosote wood preservative–contaminated soils at the Champion International Superfund Site in Libby, Montana currently undergo bioremediation in a prepared-bed land treatment unit (LTU) process. Microbes isolated from these LTU soils rapidly mineralized the 14C-labeled PAH pyrene in the LTU soil. Gram staining, electron microscopy, and 16S rDNA-sequencing revealed that three of these bacteria, JLS, KMS, and MCS, were Mycobacterium strains. The phylogeny of the 16S rDNA showed that they were distinct from other Mycobacterium isolates with PAH-degrading activities. Catalase and superoxide dismutase (SOD) isozyme profiles confirmed that each isolate was distinct from each other and from the PAH-degrading mycobacterium, Mycobacterium vanbaalenii sp. nov, isolated from a petroleum-contaminated soil. We find that dioxygenase genes nidA and nidB are present in each of the Libby Mycobacterium isolates and are adjacent to each other in the sequence nidB-nidA, an order that is unique to the PAH-degrading mycobacteria.


  1. 1.
    Ahn, Y, Sanseverino, J, Sayler, GS 1999Analyses of polycyclic aromatic hydrocarbon-degrading bacteria isolated from contaminated soils.Biodegradation10149157CrossRefPubMedGoogle Scholar
  2. 2.
    Bakermans, C, Madsen, E 2001Detection in coal tar waste-contaminated groundwater of mRNA transcripts related to naphthalene dioxygenase by fluorescent in situ hybridization with tyramide signal amplification.J Microbiol Methods507584CrossRefGoogle Scholar
  3. 3.
    Bastiaens, L, Springael, D, Wattiau, P, Harms, H, deWachter, R, Verachtert, H, Diels, L 2000Isolation of adherent polycyclic aromatic hydrocarbon (PAH)-degrading bacteria using PAH-sorbing carriers.Appl Environ Microbiol6618341843CrossRefPubMedGoogle Scholar
  4. 4.
    Cerniglia, CE 1993Biodegradation of polycyclic aromatic hydrocarbons.Curr Opin Biotechnol4331338CrossRefGoogle Scholar
  5. 5.
    Cheung, PY, Kinkle, BK 2001Mycobacterium diversity and pyrene mineralization in petroleum-contaminated soils.Appl Environ Microbiol6722222229PubMedGoogle Scholar
  6. 6.
    Daane, LL, Harjono, I, Zylstra, GJ, Haggblom, MM 2001Isolation and characterization of polycyclic aromatic hydrocarbon–degrading bacteria associated with the rhizosphere of salt marsh plants.Appl Environ Microbiol6726832691CrossRefPubMedGoogle Scholar
  7. 7.
    Ginn, JS, Doucette, WJ, Sims, RC 1994Chemical mass balance approach for estimating fate and transport of polycyclic aromatic metabolites in the subsurface environment.Polycyclic Aromatic Compounds5225234Google Scholar
  8. 8.
    Govindaswami, M, Feldhake, DJ, Kinkle, BK, Mindell, DP, Loper, JC 1995Phylogenetic comparison of two polycyclic aromatic hydrocarbon-degrading mycobacteria.Appl Environ Microbiol6132213226PubMedGoogle Scholar
  9. 9.
    Harvey, RG 1991Polycyclic Aromatic Hydrocarbons Chemistry and CarcinogenicityCambridge University PressCambridge, UKGoogle Scholar
  10. 10.
    Heitkamp, MA, Franklin, W, Cerniglia, CE 1988Microbial metabolism of polycyclic aromatic hydrocarbons: isolation and characterization of a pyrene-degrading bacterium.Appl Environ Microbiol5425492555PubMedGoogle Scholar
  11. 11.
    Heitkamp, MA, Freeman, JP, Miller, DW, Cerniglia, CE 1988Pyrene degradation by Mycobacterium sp.: Identification of ring oxidation and ring fission products.Appl Environ Microbiol5425562565PubMedGoogle Scholar
  12. 12.
    Holman, HYN, Nieman, K, Sorensen, DL, Miller, CD, Martin, MC, Borch, T, Mckinney, WR, Sims, RC 2002Catalysis of PAH biodegradation by humic acid shown in synchrotron infrared studies.Environ Sci Technol3612761280CrossRefPubMedGoogle Scholar
  13. 13.
    Hurst, CJ, Sims, RC, Sims, JL, Sorensen, DL, McLean, JE, Huling, S 1996Polycyclic aromatic hydrocarbon biodegradation as a function of oxygen tension in contaminated soil.J Haz Mat51193208CrossRefGoogle Scholar
  14. 14.
    Katsuwon, J, Anderson, AJ 1990Catalase and superoxide dismutase of root-colonizing saprophytic fluorescent pseudomonads.Appl Environ Microbiol5635763582Google Scholar
  15. 15.
    Khan, AA, Kim, SJ, Paine, DD, Cerniglia, CE 2002Classification of a polycyclic aromatic hydrocarbon-metabolizing bacterium, Mycobacterium sp. strain PYR-1, as Mycobacterium vanbaalenii sp. nov.Int J Syst Evol Microbiol5219972002CrossRefPubMedGoogle Scholar
  16. 16.
    Khan, AA, Wang, RF, Cao, WW, Doerge, DR, Wennerstrom, D, Cerniglia, CE 2001Molecular cloning, nucleotide sequence, and expression of genes encoding a polycyclic aromatic ring dioxygenase from Mycobacterium sp. strain PYR-1.Appl Environ Microbiol.6735773585CrossRefPubMedGoogle Scholar
  17. 17.
    Levy-Frebault, VV, Portaels, F 1992Proposed minimum standards for the genus Mycobacterium and for description of new slowly growing Mycobacterium species.Int J Syst Bacteriol42315323PubMedGoogle Scholar
  18. 18.
    Lygren, ST, Closs, O, Bercouvier, H, Wayne, LG 1986Catalases, peroxidases, and superoxide dismutases in Mycobacterium leprae and other mycobacteria studied by crossed immunoelectrophoresis and polyacrylamide gel electrophoresis.Infect Immun54666672PubMedGoogle Scholar
  19. 19.
    Mayer, BK, Falkinham, JO 1986Superoxide dismutase activity of Mycobacterium avium, M. intracellulare, and M. scrofulaceum.Infect Immun53631635PubMedGoogle Scholar
  20. 20.
    Menendez, MC, Ainsa, JA, Martin, C, Garcia, MJ 1997katGI and katGII encode two different catalases-peroxidases in Mycobacterium fortuitum.J Bacteriol17968806886PubMedGoogle Scholar
  21. 21.
    Menendez, MC, Domenech, P, Prieto, J, Garcia, MJ 1995Cloning and expression of the Mycobacterium fortuitum superoxide dismutase gene.FEMS Microbiol Lett134273278CrossRefPubMedGoogle Scholar
  22. 22.
    Menzie, CA, Potocki, BB, Santodonato, J 1992Exposure to carcinogenic PAHs in the environment.Environ Sci Technol2612781284Google Scholar
  23. 23.
    Moser, R, Stahl, U 2001Insights into the genetic diversity of initial dioxygenases from PAH-degrading bacteria.Appl Microbiol Biotechnol55609618CrossRefPubMedGoogle Scholar
  24. 24.
    NRC1993In Situ Bioremediation:When Does It Work?National Academy PressWashington, DCGoogle Scholar
  25. 25.
    Penning, TM, Ohnishi, ST, Ohnishi, T, Harvey, RG 1996Generation of reactive oxygen species during the enzymatic oxidation of polycyclic aromatic hydrocarbon trans-dihydrodiols catalyzed by dihydrodiol dehydrogenase.Chem Res Toxicol98492CrossRefPubMedGoogle Scholar
  26. 26.
    Rafii, F, Lunsford, P, Hehman, G, Cerniglia, CE 1999Detection and purification of a catalase-peroxidase from Mycobacterium sp. Pyr-1FEMS Microbiol Lett173285290CrossRefPubMedGoogle Scholar
  27. 27.
    Rogall, T, Wolters, J, Flohr, T, Bottger, EC 1990Towards a phylogeny and definition of species at the molecular level within the genus Mycobacterium.Int J Syst Bacteriol40323330PubMedGoogle Scholar
  28. 28.
    Shivannavar, CT, Katoch, VM, Sharma, VD, Patil, MA, Katoch, K, Bharadwaj, VP, Sharma, RK, Bhatia, AS, Agrawal, BM 1996Determination of mycobacterial phylogeny on the basis of immunological relatedness of superoxide dismutases.Int J Syst Bacteriol4611641169PubMedGoogle Scholar
  29. 29.
    Sims, RC 1990Soil remediation techniques at uncontrolled hazardous waste sites: a critical review.J Air Waste Manag Assoc40703732Google Scholar
  30. 30.
    Smida, J, Kazda, J, Stackebrandt, E 1988Molecular-genetic evidence for the relationship of Mycobacterium leprae to slow-growing pathogenic mycobacteria.Int J Lepr Other Mycobact Dis56449454PubMedGoogle Scholar
  31. 31.
    Swofford, DL 1998PAUP* Phylogenetic analysis using parisomy (*and other methods). Version 4Sinauer AssociatesSunderland, MAGoogle Scholar
  32. 32.
    Thompson, JD, Higgins, DG, Gibson, TJ 1994CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice.Nucleic Acids Res2246734680PubMedGoogle Scholar
  33. 33.
    U.S. Environmental Protection Agency (1979) Health effects. Health assessment document for polycyclic organic matter. Office of Research and Development, US Environmental Protection Agency, Washington, DC, pp 232–248Google Scholar
  34. 34.
    U. S. Environmental Protection Agency (1996) Champion International Superfund Site, Libby, Montana Bioremediation Field Performance Evaluation of the Prepared Bed Land Treatment System. Vol I. EPA/600/R-95/156. US EPA, Office of Research and Development Washington, DC 20460Google Scholar
  35. 35.
    U. S. Environmental Protection Agency (1997) Champion International Superfund Site, Libby, Montana Field Performance Evaluation: Bioremediation Unit: In Situ Bioremediation of the Upper Aquifer. Office of Research and Development, Washington, DC 20460Google Scholar
  36. 36.
    Wang, R, Luneau, A, Cao, W, Cerniglia, CE 1996PCR detection of polycyclic aromatic hydrocarbon–degrading mycobacteria.Environ Sci Technol30307311CrossRefGoogle Scholar
  37. 37.
    Wang, R, Wennerstrom, D, Cao, W, Kahn, AA, Cerniglia, CE 2000Cloning, expression, and characterization of the katG gene, encoding catalase-peroxidase, from the polycyclic aromatic hydrocarbon degrading bacterium Mycobacterium sp. Strain PYR-1.Environ Sci Technol6643004304Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • C.D. Miller
    • 1
  • K. Hall
    • 2
  • Y.N. Liang
    • 2
  • K. Nieman
    • 2
  • D. Sorensen
    • 2
  • B. Issa
    • 2
  • A.J. Anderson
    • 1
  • R.C. Sims
    • 2
    • 3
  1. 1.Department of BiologyUtah State UniversityLoganUSA
  2. 2.Utah Water Research LaboratoryUtah State UniversityLoganUSA
  3. 3.Department of Biological and Irrigation EngineeringUtah State UniversityLoganUSA

Personalised recommendations