Skip to main content

Advertisement

Log in

Simultaneous Measurements of Organic Carbon Mineralization and Bacterial Production in Oxic and Anoxic Lake Sediments

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Based on work in marine sediments it can be hypothesized that (i) overall OM mineralization depends on the enzymatic capacity and is largely independent from the energy yield, (ii) similar oxic and anoxic rates are expected for fresh OM, while oxic rates should be faster for old OM that is partially degraded or adsorbed to particles, and (iii) that the thermodynamic energy yield does not regulate mineralization, but primarily determines the energy fraction allocated to bacterial production (BP). We addressed these hypotheses by simultaneous measurements of mineralization rates (MR) and BP in sediments from a eutrophic lake, along with MR measurements in sediments of a dystrophic lake. Anoxic MR were 44 and 78% of oxic MR in the eutrophic and dystrophic lake, respectively, which was always higher than expected given the theoretical energy yields. The BP:MR ratio was 0.94 and 0.24 in the oxic and anoxic treatments, respectively, in accordance with the expected energy yields. Thus, the results support all three hypotheses above. We also critically discuss BP measurements in sediments and suggest that bacterial growth efficiency values from simultaneous MR and BP measurements can be used to evaluate the reliability of BP estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. FO Andersen (1996) ArticleTitleFate of organic carbon added as diatom cells to oxic and anoxic marine sediment microcosms. Mar Ecol Prog Ser 134 225–233 Occurrence Handle1:CAS:528:DyaK28XktlCgur0%3D

    CAS  Google Scholar 

  2. D Bastviken J Ejlertsson L Tranvik (2001) ArticleTitleSimilar bacterial growth on dissolved organic matter in anoxic and oxic lake water. Aquat Microb Ecol 24 41–49

    Google Scholar 

  3. D Bastviken L Tranvik (2001) ArticleTitleThe leucine incorporation method estimates bacterial growth equally well in both oxic and anoxic lake water. Appl Environ Microbiol 67 2916–2921 Occurrence Handle1:CAS:528:DC%2BD3MXkvFSntL4%3D Occurrence Handle11425702

    CAS  PubMed  Google Scholar 

  4. RT Bell LJ Tranvik (1993) ArticleTitleImpact of acidification and liming on the microbial ecology of lakes. Ambio 22 325–330

    Google Scholar 

  5. R Benner AE Maccubbin RE Hodson (1984) ArticleTitleAnaerobic biodegradation of the lignin and polysaccharide components of ligninocellulose and synthetic lignin by sediment microflora. Appl Environ Microbiol 47 988–1004

    Google Scholar 

  6. DE Canfield (1994) ArticleTitleFactors influencing organic carbon preservation in marine sediments. Chem Geol 114 315–329 Occurrence Handle1:CAS:528:DyaK2cXktFCiurs%3D Occurrence Handle11539298

    CAS  PubMed  Google Scholar 

  7. JJ Cole ML Pace (1995) ArticleTitleBacterial secondary production in oxic and anoxic freshwaters. Limnol Oceanogr 40 1019–1027

    Google Scholar 

  8. PA del Giorgio JJ Cole (1998) ArticleTitleBacterial growth efficiency in natural aquatic systems. Annu Rev Ecol Syst 29 503–541

    Google Scholar 

  9. C den Hayer J Kalff (1998) ArticleTitleOrganic matter mineralization rates in sediments: A within- and among-lake study. Limnol Oceanogr 43 695–705

    Google Scholar 

  10. AL dos Santos Furtado P Casper (2000) ArticleTitleDifferent methods for extracting bacteria from freshwater sediment and a simple method to measure bacterial production in sediment samples. J Microbiol Methods 41 249–257 Occurrence Handle1:CAS:528:DC%2BD3cXlvV2mtLo%3D Occurrence Handle10958970

    CAS  PubMed  Google Scholar 

  11. S Emerson JI Hedges (1988) ArticleTitleProcesses controlling the organic carbon content of open ocean sediments. Paleoceanography 3 621–634

    Google Scholar 

  12. T Fenchel BJ Finlay (1995) Ecology and Evolution in Anoxic Worlds. Oxford University Press Oxford

    Google Scholar 

  13. S Findlay (1993) Thymidine incorporation into DNA and an estimate of sediment bacterial production. PF Kemp BF Sherr EB Sherr JJ Cole (Eds) Handbook of Methods in Aquatic Microbial Ecology. Lewis Publishers Boca Raton, FL 505–508

    Google Scholar 

  14. H Fischer M Pusch (1999) ArticleTitleUse of the [14C]leucine incorporation technique to measure bacterial production in river sediments and the epiphyton. Appl Environ Microbiol 65 4411–4418 Occurrence Handle1:CAS:528:DyaK1MXms1OisLo%3D Occurrence Handle10508068

    CAS  PubMed  Google Scholar 

  15. JM Gasol B Sander M Schallenberg (1993) ArticleTitleProduction of bacteria in freshwater sediments: Comparison of different cell-specific measurements to mineralization rates. Verh Internat Verein Limnol 25 325–330 Occurrence Handle1:CAS:528:DyaK2cXhsVeksQ%3D%3D

    CAS  Google Scholar 

  16. CR Gong DJ Hollander (1997) ArticleTitleDifferential contribution of bacteria to sedimentary organic matter in oxic and anoxic environments, Santa Monica Basin, California. Org Geochem 26 545–563 Occurrence Handle1:CAS:528:DyaK1cXpvVCl

    CAS  Google Scholar 

  17. HR Harvey JH Tuttle JT Bell (1995) ArticleTitleKinetics of phytoplankton decay during simulated sedimentation: Changes in biochemical composition and microbial activity under oxic and anoxic conditions. Geochim Cosmochim Acta 59 3367–3377 Occurrence Handle1:CAS:528:DyaK2MXnslOgu7w%3D

    CAS  Google Scholar 

  18. JI Hedges FS Hu AH Devol HE Hartnett E Tsamakis RG Keil (1999) ArticleTitleSedimentary organic matter preservation: A test for selective degradation under oxic conditions. Am J Sci 299 529–555 Occurrence Handle1:CAS:528:DC%2BD3cXls1Oitw%3D%3D

    CAS  Google Scholar 

  19. JI Hedges RG Keil (1995) ArticleTitleSedimentary organic matter preservation: An assessment and speculative synthesis. Mar Chem 49 81–115 Occurrence Handle1:CAS:528:DyaK2MXmtVyqsb4%3D

    CAS  Google Scholar 

  20. SM Henrichs WS Reeburgh (1987) ArticleTitleAnaerobic mineralization of marine sediment organic matter: Rates and the role of anaerobic processes in the oceanic carbon economy. Geomicrob J 5 191–237 Occurrence Handle1:CAS:528:DyaL1cXovFGrtQ%3D%3D

    CAS  Google Scholar 

  21. G Hulthe S Hulth POJ Hall (1998) ArticleTitleEffect of oxygen on degradation rate of refractory and labile organic matter in continental margin sediments. Geochim Cosmochim Acta 62 1319–1328 Occurrence Handle1:CAS:528:DyaK1cXktVynurw%3D

    CAS  Google Scholar 

  22. BE Jackson MJ McInerney (2002) ArticleTitleAnaerobic microbial metabolism can proceed close to thermodynamic limits. Nature 415 454–456 Occurrence Handle10.1038/415454a Occurrence Handle1:CAS:528:DC%2BD38XhtVKjsrY%3D Occurrence Handle11807560

    Article  CAS  PubMed  Google Scholar 

  23. A Jonsson M Meili A-K Bergström M Jonsson (2001) ArticleTitleWhole-lake mineralization of allochthonous and autochthonous organic carbon in a large humic lake (Örträsket, N. Sweden). Limnol Oceanogr 46 1691–1700 Occurrence Handle1:CAS:528:DC%2BD3MXovVGnt74%3D

    CAS  Google Scholar 

  24. DL Kirchman (1993) Leucine incorporation as a measure of biomass production by heterotrophic bacteria. PF Kemp BF Sherr EB Sherr JJ Cole (Eds) Handbook of Methods in Aquatic Microbial Ecology. Lewis Publishers Boca Raton, FL 509–512

    Google Scholar 

  25. AKT Kirschner B Velimirov (1999) ArticleTitleBenthic bacterial secondary production measured via simultaneous 3H-thymidine and l4C-leucine incorporation, and its implication for the carbon cycle of a shallow macrophyte-dominated backwater system. Limnol Oceanogr 44 1871–1881 Occurrence Handle1:CAS:528:DC%2BD3cXhsFKktA%3D%3D

    CAS  Google Scholar 

  26. L Klemedtsson ÅK Klemedtsson F Moldan P Weslien (1997) ArticleTitleNitrous oxide emission from Swedish forest soils in relation to liming and simulated increased N-deposition. Biol Fertil Soils 25 290–295 Occurrence Handle1:CAS:528:DyaK2sXmtV2lsr0%3D

    CAS  Google Scholar 

  27. E Kristensen (2000) ArticleTitleOrganic matter diagenesis at the oxic/anoxic interface in coastal marine sediments, with emphasis on the role of burrowing animals. Hydrobiologia 426 1–24 Occurrence Handle1:CAS:528:DC%2BD3cXmtVartrk%3D

    CAS  Google Scholar 

  28. C Lee (1992) ArticleTitleControls on organic-carbon preservation: The use of stratified water bodies to compare intrinsic rates of decomposition in oxic and anoxic systems. Geochim Cosmochim Acta 56 3323–3335 Occurrence Handle1:CAS:528:DyaK38XlvFOqsbo%3D

    CAS  Google Scholar 

  29. J Marxsen (1996) ArticleTitleMeasurement of bacterial production in stream-bed sediments via leucine incorporation. FEMS Microbiol Ecol 21 313–325 Occurrence Handle1:CAS:528:DyaK28Xnt1Kqtrs%3D

    CAS  Google Scholar 

  30. MD Mattson GE Likens (1993) ArticleTitleRedox reactions of organic matter decomposition in a soft water lake. Biogeochemistry 19 149–172 Occurrence Handle1:CAS:528:DyaK2cXhtFKitrk%3D

    CAS  Google Scholar 

  31. RJ McDonough RW Sanders KG Porter DL Kirchman (1986) ArticleTitleDepth distribution of bacterial production in a stratified lake with an anoxic hypolimnion. Appl Environ Microbiol 52 992–1000 Occurrence Handle1:CAS:528:DyaL2sXptVOr

    CAS  Google Scholar 

  32. RT Nguyen HR Harvey (1997) ArticleTitleProtein and amino acid cycling during phytoplankton decomposition in oxic and anoxic waters. Org Geochem 27 115–128 Occurrence Handle1:CAS:528:DyaK1cXlt1ymtA%3D%3D

    CAS  Google Scholar 

  33. TF Pedersen SE Calvert (1990) ArticleTitleAnoxia vs. productivity: What controls the formation of organic-carbon-rich sediments and sedimentary rocks? Am Assoc Petr Geol B 74 454–466 Occurrence Handle1:CAS:528:DyaK3cXlslGju7g%3D

    CAS  Google Scholar 

  34. C Pedrós-Alió J García-Cantizano JI Calderón (1993) Bacterial production in anaerobic water columns. PF Kemp BF Sherr EB Sherr JJ Cole (Eds) Handbook of Methods in Aquatic Microbial Ecology. Lewis Publishers Boca Raton, FL 519–530

    Google Scholar 

  35. B Schink (1988) Principles and limits of anaerobic degradation: Environmental and technological aspects. AJB Zehnder (Eds) Biology of Anaerobic Microorganisms. John Wiley & Sons New York 771–846

    Google Scholar 

  36. M Simon F Azam (1989) ArticleTitleProtein content and protein synthesis rates of planktonic marine bacteria. Mar Ecol Prog Ser 51 201–213 Occurrence Handle1:CAS:528:DyaL1MXhvV2jsL8%3D

    CAS  Google Scholar 

  37. DC Smith F Azam (1992) ArticleTitleA simple, economical method for measuring bacterial protein synthesis rates in seawater using 3H-leucine. Marine Microbial Food Webs 6 107–114

    Google Scholar 

  38. M-Y Sun C Lee RC Aller (1993) ArticleTitleLaboratory studies of oxic and anoxic degradation of chlorophyll-a in Long Island Sound sediments. Geochim Cosmochim Acta 57 147–157 Occurrence Handle1:CAS:528:DyaK3sXhtVKmtrw%3D

    CAS  Google Scholar 

  39. M-Y Sun SG Wakeham C Lee (1997) ArticleTitleRates and mechanisms of fatty acid degradation in oxic and anoxic coastal marine sediments of Long Island Sound, New York, USA. Geochim Cosmochim Acta 61 341–355 Occurrence Handle1:CAS:528:DyaK2sXhtVGlt7g%3D

    CAS  Google Scholar 

  40. LJ Tranvik (1998) Degradation of dissolved organic matter in humic waters by bacteria. DO Hessen LJ Tranvik (Eds) Aquatic Humic Substances: Ecology and Biogeochemistry. Springer-Verlag Berlin 259–283

    Google Scholar 

  41. LJ Tranvik W Granéli G Gahnström (1994) ArticleTitleMicrobial activity in acidified and limed humic lakes. Can J Fish Aquat Sci 51 2529–2536

    Google Scholar 

  42. L Tuominen (1995) ArticleTitleComparison of leucine uptake methods and a thymidine incorporation method for measuring bacterial activity in sediment. J Microbiol Methods 24 125–134 Occurrence Handle1:CAS:528:DyaK28XhtFyitLc%3D

    CAS  Google Scholar 

  43. JT Westrich RA Berner (1984) ArticleTitleThe role of sedimentary organic matter in bacterial sulfate reduction: The G model tested. Limnol Oceanogr 29 236–249 Occurrence Handle1:CAS:528:DyaL2cXkt1Ortbk%3D

    CAS  Google Scholar 

  44. RG Wetzel (2001) Limnology—Lake and River Ecosystems, 3rd ed. Academic Press San Diego

    Google Scholar 

  45. RG Wetzel GE Likens (1991) Limnological Analyses, 2nd ed. Springer-Verlag New York

    Google Scholar 

  46. AJB Zehnder W Stumm (1988) Geochemistry and biogeochemistry of anaerobic habitats. AJB Zehnder (Eds) Biology of Anaerobic Microorganisms. John Wiley & Sons New York 1–38

    Google Scholar 

  47. AJB Zehnder BH Svensson (1986) ArticleTitleLife without oxygen: what can and what cannot? Experientia 42 1197–1205 Occurrence Handle1:CAS:528:DyaL2sXmsVSmtA%3D%3D Occurrence Handle3536571

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Bo Svensson, Dan Lindmark, and Lars Höglund for invaluable assistance and support during various parts of the work. Håkan Olsson generously provided information about the sampled lakes. This study was funded by the Swedish Natural Science Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Bastviken.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bastviken, D., Olsson, M. & Tranvik, L. Simultaneous Measurements of Organic Carbon Mineralization and Bacterial Production in Oxic and Anoxic Lake Sediments . Microb Ecol 46, 73–82 (2003). https://doi.org/10.1007/s00248-002-1061-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-002-1061-9

Keywords

Navigation