Skip to main content
Log in

Competition between Fe(III)-Reducing and Methanogenic Bacteria for Acetate in Iron-Rich Freshwater Sediments

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The kinetics of acetate uptake and the depth distribution of [2-14C]acetate metabolism were examined in iron-rich sediments from a beaver impoundment in northcentral Alabama. The half-saturation constant (Km) determined for acetate uptake in slurries of Fe(III)-reducing sediment (0.8 µM) was more than 10-fold lower than that measured in methanogenic slurries (12 µM) which supported comparable rates of bulk organic carbon metabolism and Vmax values for acetate uptake. The endogenous acetate concentration (S n) was also substantially lower (1.7 µM) in Fe(III)-reducing vs methanogenic (9.0 µM) slurries. The proportion of [2-14C]acetate converted to 14CH4 increased with depth from ca 0.1 in the upper 0.5 cm to ca 0.8 below 2 cm and was inversely correlated (r2 = 0.99) to a decline in amorphous Fe(III) oxide concentration. The results of the acetate uptake kinetics experiments suggest that differences in the affinity of Fe(III)-reducing bacteria vs methanogens for acetate can account for the preferential conversion of [2-14C]acetate to 14CO2 in Fe(III) oxide-rich surface sediments, and that the downcore increase in conversion of [2-14C]acetate to 14CH4 can be attributed to progressive liberation of methanogens from competition with Fe(III) reducers as Fe(III) oxides are depleted with depth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E.E. Roden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roden, E., Wetzel, R. Competition between Fe(III)-Reducing and Methanogenic Bacteria for Acetate in Iron-Rich Freshwater Sediments. Microb Ecol 45, 252–258 (2003). https://doi.org/10.1007/s00248-002-1037-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-002-1037-9

Navigation