Skip to main content

Advertisement

Log in

Clinical application of magnetic resonance elastography in pediatric neurological disorders

  • Review
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Magnetic resonance elastography is a relatively new, rapidly evolving quantitative magnetic resonance imaging technique which can be used for mapping the viscoelastic mechanical properties of soft tissues. MR elastography measurements are akin to manual palpation but with the advantages of both being quantitative and being useful for regions which are not available for palpation, such as the human brain. MR elastography is noninvasive, well tolerated, and complements standard radiological and histopathological studies by providing in vivo measurements that reflect tissue microstructural integrity. While brain MR elastography studies in adults are becoming frequent, published studies on the utility of MR elastography in children are sparse. In this review, we have summarized the major scientific principles and recent clinical applications of brain MR elastography in diagnostic neuroscience and discuss avenues for impact in assessing the pediatric brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

There is no data associated with this manuscript.

References

  1. Muthupillai R, Lomas DJ, Rossman PJ et al (1995) Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science 269(5232):1854–1857

    Article  CAS  PubMed  Google Scholar 

  2. Manduca A, Oliphant TE, Dresner MA et al (2001) Magnetic resonance elastography: non-invasive mapping of tissue elasticity. Med Image Anal 5(4):237–254

    Article  CAS  PubMed  Google Scholar 

  3. Yin M, Talwalkar JA, Glaser KJ et al (2007) Assessment of hepatic fibrosis with magnetic resonance elastography. Clin Gastroenterol Hepatol 5(10):1207-1213.e2

    Article  PubMed  PubMed Central  Google Scholar 

  4. Mariappan YK, Glaser KJ, Ehman RL (2010) Magnetic resonance elastography: A Review. Clin Anat 23(5):497–511

    Article  PubMed  PubMed Central  Google Scholar 

  5. Glaser KJ, Manduca A, Ehman RL (2012) Review of MR elastography applications and recent developments. J Magn Reson Imaging 36(4):757–774

    Article  PubMed  Google Scholar 

  6. Yin M, Glaser KJ, Talwalkar J et al (2016) Hepatic MR elastography: Clinical performance in a series of 1377 consecutive examinations. Radiology 278(1):114–124

    Article  PubMed  Google Scholar 

  7. Hiscox LV, Johnson CL, Barnhill E et al (2016) Magnetic resonance elastography (MRE) of the human brain: Technique, findings and clinical applications. Phys Med Biol 61(24):R401–R437

    Article  PubMed  Google Scholar 

  8. Murphy MC, Huston J, Ehman RL (2019) MR elastography of the brain and its application in neurological diseases. Neuroimage 187:176–183

    Article  PubMed  Google Scholar 

  9. Arani A, Manduca A, Ehman RL et al (2021) Harnessing brain waves: A review of brain magnetic resonance elastography for clinicians and scientists entering the field. Br J Radiol 94(1119):20200265

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hiscox LV, McGarry MDJ, Schwarb H et al (2020) Standard-space atlas of the viscoelastic properties of the human brain. Hum Brain Mapp 41(18):5282–5300

    Article  PubMed  PubMed Central  Google Scholar 

  11. Murphy MC, Huston J, Jack CR et al (2013) Measuring the characteristic topography of brain stiffness with magnetic resonance elastography. PLoS ONE 8(12):e81668

    Article  PubMed  PubMed Central  Google Scholar 

  12. Johnson CL, McGarry MDJ, Gharibans AA et al (2013) Local mechanical properties of white matter structures in the human brain. Neuroimage 79:145–152

    Article  PubMed  Google Scholar 

  13. Johnson CL, Schwarb H, McGarry MDJ et al (2013) Viscoelasticity of subcortical gray matter structures. Hum Brain Mapp 37(12):4221–4233

    Article  Google Scholar 

  14. Zhang J, Green MA, Sinkus R et al (2011) Viscoelastic properties of human cerebellum using magnetic resonance elastography. J Biomech 44(10):1909–1913

    Article  PubMed  Google Scholar 

  15. ElSheikh M, Arani A, Perry A et al (2017) MR Elastography demonstrates unique regional brain stiffness patterns in Dementias. Am J Roentgenol 209(2):403–408

    Article  Google Scholar 

  16. Hiscox LV, Schwarb H, McGarry MDJ, Johnson CL (2021) Aging brain mechanics: Progress and promise of Magnetic Resonance Elastography. Neuroimage 232:117889

    Article  PubMed  Google Scholar 

  17. Schwarb H, Johnson CL, McGarry MDJ et al (2016) Medial temporal lobe viscoelasticity and relational memory performance. Neuroimage 132:534–541

    Article  PubMed  Google Scholar 

  18. Schwarb H, Johnson CL, Daugherty AM et al (2017) Aerobic fitness, hippocampal viscoelasticity, and relational memory performance. Neuroimage 153:179–188

    Article  PubMed  Google Scholar 

  19. McIlvain G, Schwarb H, Cohen NJ et al (2018) Mechanical properties of the in vivo adolescent human brain. Dev Cogn Neurosci 34:27–33

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yeung J, Jugé L, Hatt A et al (2019) Paediatric brain tissue properties measured with magnetic resonance elastography. Biomech Model Mechanobiol 18(5):1497–1505

    Article  PubMed  Google Scholar 

  21. Ozkaya E, Fabris G, Macruz F et al (2021) Viscoelasticity of children and adolescent brains through MR elastography. J Mech Behav Biomed Mater 115:104229

    Article  PubMed  Google Scholar 

  22. Johnson CL, Telzer EH (2018) Magnetic resonance elastography for examining developmental changes in the mechanical properties of the brain. Dev Cogn Neurosci 33:176–181

    Article  PubMed  Google Scholar 

  23. Manduca A, Bayly PV, Ehman RL et al (2020) MR Elastography: Principles, guidelines, and terminology. Magn Reson Med 85(5):2377–2390

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sack I, Jöhrens K, Würfel J et al (2013) Structure-sensitive elastography: on the viscoelastic powerlaw behavior of in vivo human tissue in health and disease. Soft Matter 9(24):5672–80

    Article  CAS  Google Scholar 

  25. Fehlner A, Behrens JR, Streitberger K-J et al (2016) Higher-resolution MR elastography reveals early mechanical signatures of neuroinflammation in patients with clinically isolated syndrome. J Magn Reson Imaging 44(1):51–58

    Article  PubMed  Google Scholar 

  26. Streitberger K-J, Reiss-Zimmerman M, Freimann FB et al (2014) High-resolution mechanical imaging of glioblastoma by multifrequency magnetic resonance elastography. PLoS ONE 22(9):e110588

    Article  Google Scholar 

  27. Badachhape AA, Okamoto RJ, Durham RS et al (2017) The relationship of three-dimensional human skull motion to brain tissue deformation in magnetic resonance elastography studies. J Biomech Eng 139(5):051002

    Article  Google Scholar 

  28. Ehman EC, Rossman PJ, Kruse SA et al (2008) Vibration safety limits for magnetic resonance elastography. Phys Med Biol 53(4):925–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu G-R, Gao P-Y, Lin Y et al (2009) Brain magnetic resonance elastography on healthy volunteers: A safety study. Acta Radiol 50(4):423–429

    Article  PubMed  Google Scholar 

  30. Guenthner C, Kozerke S (2018) Encoding and readout strategies in magnetic resonance elastography. NMR Biomed 31(10):e3919

    Article  PubMed  Google Scholar 

  31. Chaze CA, McIlvain G, Smith DR et al (2019) Altered brain tissue viscoelasticity in pediatric cerebral palsy measured by magnetic resonance elastography. NeuroImage: Clinical 22:101750

    Article  PubMed  Google Scholar 

  32. Guo J, Hirsch S, Fehlner A et al (2013) Towards an elastographic atlas of brain anatomy. PLoS ONE 8(8):e71807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. McGarry MD, Van Houten EE, Perriñez PR et al (2011) An octahedral shear strain-based measure of SNR for 3D MR Elastography. Phys Med Biol 56(13):N153–N164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Johnson CL, McGarry MD, Van Houten EE et al (2012) Magnetic resonance elastography of the brain using multishot spiral readouts with self-navigated motion correction. Magn Reson Med 70(2):404–412

    Article  PubMed  PubMed Central  Google Scholar 

  35. Johnson CL, Holtrop JL, McGarry MDJ et al (2013) 3D multislab, multishot acquisition for fast, whole-brain MR elastography with high signal-to-noise efficiency. Magn Reson Med 71(2):477–485

    Article  Google Scholar 

  36. Peng X, Sui Y, Trzasko JD et al (2021) Fast 3D mr Elastography of the whole brain using spiral staircase: Data acquisition, Image Reconstruction, and joint deblurring. Magn Reson Med 86(4):2011–2024

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sui Y, Arani A, Trzasko JD et al (2020) Turbine-MRE: A 3D hybrid radial-cartesian EPI acquisition for mr elastography. Magn Reson Med 85(2):945–952

    Article  PubMed  PubMed Central  Google Scholar 

  38. Klatt D, Johnson CL, Magin RL (2014) Simultaneous, multidirectional acquisition of displacement fields in magnetic resonance elastography of the in vivo human brain. J Magn Reson Imaging 42(2):297–304

    Article  PubMed  PubMed Central  Google Scholar 

  39. Nir G, Sahebjavaher RS, Sinkus R et al (2014) A framework for optimization-based design of motion encoding in Magnetic Resonance Elastography. Magn Reson Med 73(4):1514–1525

    Article  PubMed  Google Scholar 

  40. Guenthner C, Runge JH, Sinkus R et al (2018) Analysis and improvement of motion encoding in Magnetic Resonance Elastography. NMR Biomed 31(5):e3908

    Article  PubMed  PubMed Central  Google Scholar 

  41. McIlvain G, Cerjanic AM, Christodoulou AG et al (2022) OSCILLATE: A low-rank approach for accelerated magnetic resonance elastography. Magn Reson Med 88(4):1659–1672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang R, Chen Y, Li R et al (2022) Fast magnetic resonance elastography with multiphase radial encoding and harmonic motion sparsity based reconstruction. Phys Med Biol 67(2):025007

    Article  Google Scholar 

  43. Hannum AJ, McIlvain G, Sowinski D, McGarry MD, Johnson CL (2022) Correlated noise in brain magnetic resonance elastography. Magn Reson Med 87(3):1313–1328

    Article  PubMed  Google Scholar 

  44. Fehlner A, Hirsch S, Weygandt M et al (2017) Increasing the spatial resolution and sensitivity of magnetic resonance elastography by correcting for subject motion and susceptibility-induced image distortions. J Magn Reson Imaging 46(1):134–141

    Article  PubMed  Google Scholar 

  45. Fovargue D, Nordsletten D, Sinkus R (2018) Stiffness reconstruction methods for MR elastography. NMR Biomed 31(10):e3935

    Article  PubMed  PubMed Central  Google Scholar 

  46. Van Houten EEW, Paulsen KD, Miga MI et al (1999) An overlapping subzone technique for MR-based Elastic Property Reconstruction. Magn Reson Med 42(4):779–786

    Article  PubMed  Google Scholar 

  47. Van Houten EEW, Miga MI, Weaver JB et al (2001) Three-dimensional subzone-based reconstruction algorithm for MR elastography. Magn Reson Med 45(5):827–837

    Article  PubMed  Google Scholar 

  48. McGarry MD, Van Houten EE, Johnson CL et al (2012) Multiresolution MR elastography using nonlinear inversion. Med Phys 39(10):6388–6396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tan L, McGarry MD, Van Houten EE et al (2017) Gradient-based optimization for Poroelastic and viscoelastic MR elastography. IEEE Trans Med Imaging 36(1):236–250

    Article  PubMed  Google Scholar 

  50. Murphy MC, Manduca A, Trzasko JD et al (2017) Artificial neural networks for stiffness estimation in magnetic resonance elastography. Magn Reson Med 80(1):351–360

    Article  PubMed  PubMed Central  Google Scholar 

  51. Scott JM, Arani A, Manduca A et al (2020) Artificial neural networks for magnetic resonance elastography stiffness estimation in inhomogeneous materials. Med Image Anal 63:101710

    Article  PubMed  PubMed Central  Google Scholar 

  52. Murphy MC, Cogswell PM, Trzasko JD et al (2020) Identification of Normal Pressure Hydrocephalus by Disease-Specific Patterns of Brain Stiffness and Damping Ratio. Invest Radiol 55(4):200–208

    Article  PubMed  PubMed Central  Google Scholar 

  53. Liao J, Yang H, Yu J, Liang X et al (2020) Progress in the application of ultrasound elastography for brain diseases. J Ultrasound Med 39(11):2093–2104

    Article  PubMed  Google Scholar 

  54. Hwang M, Riggs BJ, Katz J, Seyfert D et al (2018) Advanced Pediatric Neurosonography Techniques: Contrast-Enhanced Ultrasonography, Elastography, and Beyond. J Neuroimaging 28(1):150–157

    Article  PubMed  Google Scholar 

  55. Su Y, Ma J, Du L, Xia J et al (2015) Application of acoustic radiation force impulse imaging (ARFI) in quantitative evaluation of neonatal brain development. Clin Exp Obstet Gynecol 42(6):797–800

    Article  CAS  PubMed  Google Scholar 

  56. McIlvain G, Schneider JM, Matyi MA et al (2022) Mapping brain mechanical property maturation from childhood to adulthood. Neuroimage 263:119590

    Article  PubMed  Google Scholar 

  57. McIlvain G, Clements RG, Magoon EM et al (2020) Viscoelasticity of reward and control systems in adolescent risk taking. Neuroimage 215:116850

    Article  PubMed  Google Scholar 

  58. Streitberger K-J, Wiener E, Hoffmann J et al (2010) In vivo viscoelastic properties of the brain in normal pressure hydrocephalus. NMR Biomed 24(4):385–392

    Article  PubMed  Google Scholar 

  59. Freimann FB, Streitberger K-J, Klatt D et al (2011) Alteration of brain viscoelasticity after shunt treatment in normal pressure hydrocephalus. Neuroradiology 54(3):189–196

    Article  PubMed  Google Scholar 

  60. Fattahi N, Arani A, Perry A et al (2016) MR elastography demonstrates increased brain stiffness in normal pressure hydrocephalus. Am J Neuroradiol 37(3):462–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wagshul ME, McAllister JP, Limbrick DD et al (2021) MR Elastography demonstrates reduced white matter shear stiffness in early-onset hydrocephalus. NeuroImage: Clinical 30:102579

    Article  CAS  PubMed  Google Scholar 

  62. Pang D, Altschuler E (1994) Low-pressure hydrocephalic state and viscoelastic alterations in the brain. Neurosurgery 35(4):643–656

    Article  CAS  PubMed  Google Scholar 

  63. Olivero WC, Wszalek T, Wang H et al (2016) Magnetic Resonance Elastography Demonstrating Low Brain Stiffness in a Patient with Low-Pressure Hydrocephalus: Case Report. Pediatr Neurosurg 51(5):257–262

    Article  PubMed  Google Scholar 

  64. Olivero WC, Biswas A, Wszalek TM et al (2021) Brain stiffness following recovery in a patient with an episode of low-pressure hydrocephalus: case report. Childs Nerv Syst 37(8):2695–2698

    Article  PubMed  Google Scholar 

  65. Rekate HL (2021) Commentary on the article “Brain stiffness following recovery in a patient with an episode of low-pressure hydrocephalus: case report.” Childs Nerv Syst 37(8):2699–2700

    Article  PubMed  Google Scholar 

  66. Arani A, Min HK, Fattahi N et al (2018) Acute pressure changes in the brain are correlated with MR elastography stiffness measurements: initial feasibility in an in vivo large animal model. Magn Reson Med 79(2):1043–1051

    Article  CAS  PubMed  Google Scholar 

  67. Herthum H, Shahryari M, Tzschätzsch H et al (2021) Real-Time Multifrequency MR Elastography of the Human Brain Reveals Rapid Changes in Viscoelasticity in Response to the Valsalva Maneuver. Front Bioeng Biotechnol 9:666456

    Article  PubMed  PubMed Central  Google Scholar 

  68. Kolipaka A, Wassenaar PA, Cha S et al (2018) Magnetic resonance elastography to estimate brain stiffness: Measurement reproducibility and its estimate in pseudotumor cerebri patients. Clin Imaging 51:114–122

    Article  PubMed  PubMed Central  Google Scholar 

  69. Cogswell PM, Murphy MC, Madhavan AA, Bhatti MT et al (2022) Features of idiopathic intracranial hypertension on MRI with MR elastography: prospective comparison with control individuals and assessment of postintervention changes. Am J Roentgenol 219(6):940–951

    Article  Google Scholar 

  70. Dirrichs T, Meiser N, Panek A et al (2019) Transcranial Shear Wave Elastography of Neonatal and Infant Brains for Quantitative Evaluation of Increased Intracranial Pressure. Invest Radiol 54(11):719–727

    Article  PubMed  Google Scholar 

  71. Freeman CW, Hwang M (2022) Advanced Ultrasound Techniques for Neuroimaging in Pediatric Critical Care: A Review. Children 9(2):170

    Article  PubMed  PubMed Central  Google Scholar 

  72. National Library of Medicine (U.S). Evaluating Raised Intracranial Pressure Using MR Elastography. Identifier NCT03096743

  73. Patel DR, Neelakantan M, Pandher K, Merrick J (2020) Cerebral palsy in children: a clinical overview. Translational pediatrics 9(Suppl 1):S125–S135

    Article  PubMed  PubMed Central  Google Scholar 

  74. Himmelmann K, Horber V, De La Cruz J, Horridge K et al (2017) MRI classification system (MRICS) for children with cerebral palsy: development, reliability, and recommendations. Dev Med Child Neurol 59(1):57–64

    Article  PubMed  Google Scholar 

  75. McIlvain G, Tracy JB, Chaze CA, Petersen DA et al (2020) Brain Stiffness Relates to Dynamic Balance Reactions in Children With Cerebral Palsy. J Child Neurol 35(7):463–471

    Article  PubMed  PubMed Central  Google Scholar 

  76. Kaatsch P (2010) Epidemiology of childhood cancer. Cancer Treat Rev 36(4):277–285

    Article  PubMed  Google Scholar 

  77. Kim MM, Parolia A, Dunphy MP, Venneti S (2016) Non-invasive metabolic imaging of brain tumours in the era of precision medicine. Nat Rev Clin Oncol 13(12):725–739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wang C, Sinha S, Jiang X, Fitch S et al (2020) A comparative study of brain tumor cells from different age and anatomical locations using 3D biomimetic hydrogels. Acta Biomater 116:201–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bunevicius A, Schregel K, Sinkus R, Golby A et al (2020) MR elastography of brain tumors. NeuroImage: Clinical 25:102109

    Article  PubMed  Google Scholar 

  80. Murphy MC, Huston J, Glaser KJ, Manduca A et al (2013) Preoperative assessment of meningioma stiffness using magnetic resonance elastography. J Neurosurg 118(3):643–648

    Article  PubMed  Google Scholar 

  81. Hughes JD, Fattahi N, Van Gompel J, Arani A et al (2015) Higher-Resolution Magnetic Resonance Elastography in Meningiomas to Determine Intratumoral Consistency. Neurosurgery 77(4):653–659

    Article  PubMed  Google Scholar 

  82. Pepin KM, McGee KP, Arani A et al (2018) MR Elastography Analysis of Glioma Stiffness and IDH1-Mutation Status. AJNR Am J Neuroradiol 39(1):31–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Svensson SF, Halldórsson S, Latysheva A, Fuster-Garcia E et al (2023) MR elastography identifies regions of extracellular matrix reorganization associated with shorter survival in glioblastoma patients. Neuro-Oncol Adv 5(1):vdad021

  84. Nanjappa M, Kolipaka A (2021) Magnetic Resonance Elastography of the Brain. Magn Reson Imaging Clin N Am 29(4):617–630

    Article  PubMed  Google Scholar 

  85. Khair AM, McIlvain G, Johnson CL, Averill L et al (2022) The promising role of brain magnetic resonance elastography in evaluation of pediatric brain tumors. Pediatric Academic Societies (PAS) annual conference. April 21–25, 2022. Denver, CO. E-PAS2022:1179710

  86. Otallah S, Banwell B (2018) Pediatric Multiple Sclerosis: an Update. Curr Neurol Neurosci Rep 18(11):76

    Article  PubMed  Google Scholar 

  87. Wuerfel J, Paul F, Beierbach B, Hamhaber U et al (2010) MR-elastography reveals degradation of tissue integrity in multiple sclerosis. Neuroimage 49(3):2520–2525

    Article  PubMed  Google Scholar 

  88. Streitberger KJ, Sack I, Krefting D, Pfuller C et al (2012) Brain viscoelasticity alteration in chronic-progressive multiple sclerosis. PLoS ONE 7(1):e29888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Schregel K, Wuerfel E, Garteiser P, Gemeinhardt I et al (2012) Demyelination reduces brain parenchymal stiffness quantified in vivo by magnetic resonance elastography. Proc Natl Acad Sci USA 109(17):6650–6655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Riek K, Millward JM, Hamann I, Mueller S et al (2012) Magnetic resonance elastography reveals altered brain viscoelasticity in experimental autoimmune encephalomyelitis. NeuroImage: Clinical 1(1):81–90

    Article  PubMed  Google Scholar 

  91. Millward JM, Guo J, Berndt D, Braun J et al (2015) Tissue structure and inflammatory processes shape viscoelastic properties of the mouse brain. NMR Biomed 28(7):831–839

    Article  CAS  PubMed  Google Scholar 

  92. Streitberger KJ, Fehlner A, Pache F, Lacheta A et al (2017) Multifrequency magnetic resonance elastography of the brain reveals tissue degeneration in neuromyelitis optica spectrum disorder. Eur Radiol 27(5):2206–2215

    Article  PubMed  Google Scholar 

  93. Santoro JD, Waltz M, Aaen G, Belman A et al (2020) Pediatric Multiple Sclerosis Severity Score in a large US cohort. Neurology 95(13):e1844–e1853

    Article  PubMed  PubMed Central  Google Scholar 

  94. Iffland PH, Crino PB (2017) Focal Cortical Dysplasia: Gene Mutations, Cell Signaling, and Therapeutic Implications. Annu Rev Pathol 12:547–571

    Article  CAS  PubMed  Google Scholar 

  95. Mathon B, Clemenceau S, Carpentier A (2021) Intraoperative Ultrasound Shear-Wave Elastography in Focal Cortical Dysplasia Surgery. J Clin Med 10(5):1049

    Article  PubMed  PubMed Central  Google Scholar 

  96. Chan HW, Pressler R, Uff C, Gunny R et al (2014) A novel technique of detecting MRI-negative lesion in focal symptomatic epilepsy: intraoperative ShearWave elastography. Epilepsia 55(4):e30–e33

    Article  PubMed  Google Scholar 

  97. Huesmann GR, Schwarb H, Smith DR, Pohlig RT et al (2020) Hippocampal stiffness in mesial temporal lobe epilepsy measured with MR elastography: Preliminary comparison with healthy participants. NeuroImage: Clinical 27:102313

  98. Fallah A, Subramaniam T, Phillips HW, Michaelet A et al (2020) Novel tonometer device distinguishes brain stiffness in epilepsy surgery. Sci Rep 10(1):20978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported in part by the Delaware INBRE program (P20-GM103446) and the Delaware CTR program (U54-GM104941).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul M. Nikam.

Ethics declarations

Conflicts of interest

None

Contributions

AMK wrote the manuscript; GM, CLJ, and RMN edited the manuscript; all authors reviewed and approved the manuscript.

Disclosures

Abdulhafeez M Khair: Nothing to disclose.

Grace McIlvain: Nothing to disclose.

Matthew DJ McGarry: Nothing to disclose.

Vinay Kandula: Nothing to disclose.

Xuyi Yue: Nothing to disclose.

Gurcharanjeet Kaur: Nothing to disclose.

Lauren W Averill: Nothing to disclose.

Arabinda K Choudhary: Nothing to disclose.

Curtis L Johnson: Nothing to disclose.

Rahul M Nikam: Nothing to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khair, A.M., McIlvain, G., McGarry, M.D.J. et al. Clinical application of magnetic resonance elastography in pediatric neurological disorders. Pediatr Radiol 53, 2712–2722 (2023). https://doi.org/10.1007/s00247-023-05779-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-023-05779-3

Keywords

Navigation